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This note extends the analysis of Minardi and Savochkin (2013) by dropping

the Reciprocity axiom. We provide a more general representation result and

adapt the related analysis of comparative statics.

1 Introduction

This note extends the analysis of Minardi and Savochkin (2013) by provid-

ing a slightly more general representation that does not require imposing

the Reciprocity axiom.1 As we elaborate in the main paper, Reciprocity has

normative appeal; however, it may seem somewhat restrictive from the de-

scriptive viewpoint. In this note, we show that Reciprocity is far from being

a crucial assumption in our earlier analysis, and that essentially the same

representation can be obtained without it: A graded preference relation µ

that satisfies the remaining axioms can be represented as

µ(f, g) = π ({p ∈ M ∶ ∫
Ω

(u ○ f)dp ≥ ∫
Ω

(u ○ g)dp})
for a suitable von Neumann-Morgenstern utility function u, set of priors

M and a capacity measure π that no longer need to satisfy the reciprocity
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1As a remainder, Reciprocity states that for any f, g ∈ F such that µ(f, g) < 1, we

have µ(g, f) = 1 − µ(f, g).
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condition — Condition (ii) of Theorem 1 in our earlier paper.

This generalization comes at the expense of making the statements of our

axioms heavier. Indeed, without Reciprocity, the mere fact that µ(f, g) = 1
for some acts f and g is not sufficient to conclude that the decision maker is

absolutely sure that f is at least as good as g — that interpretation would

be far-fetched if she simulteneously reports that µ(g, f) = 0.4, for example.

As in the previous paper, the combination of µ(f, g) = 1 and µ(g, f) = 0

represents a strict preference for f over g (for sure), while the combination

of µ(f, g) = 1 = µ(g, f) represents indifference. However, in the more general

setting, we interpret the combination of µ(f, g) = 1 and µ(g, f) > 0 as an

evidence that the decision maker is still indecisive.

The rest of the note has the following structure. We implicitly maintain

the same setup as in the main paper, and use the same notation. In Sec-

tion 2, we provide more general statements of our axioms, present a theorem

showing the equivalence of the axioms and the representation, and repeat

the comparative statics exercise. All proofs are contained in Section 3.

2 Main representation result

In what follows, we list the axioms that we impose on µ. Reflexivity and

Independence have exactly the same formulation as in the main paper, while

the remaining axioms need to be restated to take the lack of Reciprocity

into account.

Axiom A1 (Reflexivity). For all f ∈ F , µ(f, f) = 1.

Axiom A2 (Weak Transitivity). For all f, g, h ∈ F , if µ(f, g) = 1 and

µ(g, f) ∈ {0,1}, then µ(f,h) ≥ µ(g, h) and µ(h, f) ≤ µ(h, g).

Axiom A3 (Monotonicity). For all f, g ∈ F , if µ(f(ω), g(ω)) = 1 and
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µ(g(ω), f(ω)) ∈ {0,1} for all ω ∈ Ω, then µ(f, g) = 1 and µ(g, f) ∈ {0,1}.

Axiom A4 (C-Completeness). For all x, y ∈X , µ(x, y) = 1 and µ(y, x) = 0,
or µ(x, y) = 0 and µ(y, x) = 1, or µ(x, y) = 1 and µ(y, x) = 1.

Axiom A5 (Independence). For all f, g, h ∈ F and α ∈ (0,1],
µ(f, g) = µ(αf + (1 − α)h,αg + (1 −α)h).

Axiom A6 (Continuity). For all f, g, h ∈ F , the mappings α↦ µ(αf +(1−
α)g, h) and α ↦ µ(h,αf + (1 − α)g) are continuous for all α ∈ [0,1], except
the points at which µ(αf + (1 − α)g, h) = 1 = µ(h,αf + (1 − α)g).

The above version of continuity directly postulates the analogue of the

result of Lemma 8 from the main paper, which we derived there from the

Continuity and Reciprocity axioms.

Axiom A7 (Nondegeneracy). µ(f, g) = 0 and µ(g, f) = 1 for some f, g ∈ F .

Next, we re-introduce a property of capacity measures that is needed for

our results.

Definition 1. We say that a capacity measure π on B(M), where M is

a nonempty, closed, and convex subset of ∆(Ω), has linear full support if,

for any ϕ ∈ B0(Ω,Σ,R), ∫Ωϕdp < 0 for at least one p ∈ M implies that

π({p ∈ M ∶ ∫Ωϕdp ≥ 0}) < 1 or 0 < π({p ∈ M ∶ ∫Ωϕdp ≤ 0}) < 1.

The definition of linear continuity for a capacity measure maintains the

same formulation as in the main paper, so we omit its restatement here.

Now, we state the main representation result for the case when µ does

not necessarily satisfy Reciprocity.
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Theorem 1. Let µ be a graded preference relation on F . Then, µ sat-

isfies Reflexivity, Weak Transitivity, Monotonicity, C-Completeness, Inde-

pendence, Continuity, and Nondegeneracy if and only if there exist a non-

constant affine function u ∶ X → R, a nonempty, convex, and closed set

M of probabilities in ∆(Ω), and a linearly continuous capacity measure

π ∶B(M) → [0,1] with linear full support such that, for all f, g ∈ F ,
µ(f, g) = π ({p ∈ M ∶ ∫

Ω

(u ○ f)dp ≥ ∫
Ω

(u ○ g)dp}) . (1)

We conclude this subsection with a remark about Bewley’s (1986) model

of Knightian Uncertainty: Our results, showing that our model is its refine-

ment (Propositions 4 and 5 of the main paper), still hold without Reci-

procity if the notion of refinement is generalized as follows.

Definition 2. A graded preference µ is a refinement of a crisp binary rela-

tion ≿ and ≿ is a coarsening of µ if, for all f, g ∈ F , the following conditions

hold:

(i) f ≻ g⇔ (µ(f, g) = 1 and µ(g, f) = 0); and
(ii) f ∼ g⇔ (µ(f, g) = 1 and µ(g, f) = 1).

2.1 Comparative Attitudes

In this subsection, we extend the notion of one agent being “more decisive”

than another which does not rely on Reciprocity, and provide a correspond-

ing comparative statics result.

Definition 3. Given two graded preference relations µ1 and µ2, we say that

µ1 is more decisive than µ2 if, for all f, g ∈ F ,
µ2(f, g) ≥ µ2(g, f) ⇒ µ1(f, g) ≥ µ2(f, g) ≥ µ2(g, f) ≥ µ1(g, f).

In words, whenever the second agent is inclined to prefer f over g, then

the first (more decisive) agent has a (weakly) greater confidence that f
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is indeed better than g in comparison with the second one, and, at the

same time, has (weakly) less confidence that g is better than f , which, put

differently, suggests that he is more confident that g is worse than f .

Our next result extends Theorem 7 in the main paper and provides a char-

acterization of comparative indecisiveness in terms of representation (1).

Theorem 2. Given two affine graded preferences µ1 and µ2 with represen-

tations (u1,M1, π1) and (u2,M2, π2), µ1 is more decisive than µ2 if and

only if the following conditions hold:

(i) u1 is a positive affine transformation of u2,

(ii) M1 ⊆M2,

(iii) for all B ∈ H2, π2(B) ≥ π2(M2/B) implies π1(M1⋂B) ≥ π2(B), and
π2(B) ≤ π2(M2/B) implies π1(M1⋂B) ≤ π2(B).

3 Proofs

Lemma 3. Suppose that µ is a graded preference relation on F that sat-

isfies the Reflexivity, Weak Transitivity, Monotonicity, Independence, C-

Completeness, Continuity, and Nondegeneracy axioms. Then, there exists a

nonconstant affine function u ∶X → R and a nonempty, convex, and closed

set M⊆∆(Ω) such that

(i) for all f, g ∈ F , (µ(f, g) = 1) ∧ (µ(g, f) ∈ {0,1}) holds if and only if

Lf,gp ≥ 0 for all p ∈ M;

(ii) the closed and convex set M satisfying Part (i) is unique, and u is

unique up to a positive affine transformation;

(iii) if (u○f)−(u○g) = λ((u○f ′)−(u○g′)) for some λ > 0 and f, g, f ′, g′ ∈ F ,
then µ(f, g) = µ(f ′, g′);

Proof. Step 1. An auxiliary crisp binary relation. Let ≿ be a crisp binary

relation on F defined as f ≿ g ⇔ ((µ(f, g) = 1) ∧ (µ(g, f) ∈ {0,1})). We
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observe that ≿ is reflexive, transitive, and has the monotonicity, indepen-

dence, and nontriviality properties due to the Reflexivity, Weak Transitiv-

ity, Monotonicity, Independence, and Nontriviality axioms. Next, we prove

that, for any f, g, h ∈ F , the sets {α ∈ [0,1] ∶ αf + (1 − α)g ≿ h} and

{α ∈ [0,1] ∶ h ≿ αf +(1−α)g} are closed. To prove that the first of these sets

is closed, suppose that the sequence (αn)∞n=1 in [0,1] converges to α and

αnf + (1 − αn)g ≿ h for all n ∈ N. If µ(αf + (1 − α)g, h) = 1 = µ(h,αf + (1 −
alpha)g), then αf +(1−α)g ≿ h by definition. Otherwise, by the Continuity

axiom, µ(αnf +(1−αn)g, h) converges to µ(αf +(1−α)g, h) as n→∞, and,

therefore, µ(αf + (1−α)g, h) = 1; similarly, µ(h,αnf + (1−αn)g) converges
to µ(h,αf + (1−α)g) as n →∞, and, therefore, µ(h,αf + (1−α)g) ∈ {0,1}.
The closedness of the second set can be proven analogously.

Step 2. The von Neumann-Morgenstern utility function u. By C-Com-

pleteness, the restriction of ≿ to X is a complete preorder. Therefore, by

the Mixture Space Theorem (Herstein and Milnor, 1953), there exists an

affine function u ∶ X → R such that x ≿ y if and only if u(x) ≥ u(y).
Moreover, Nondegeneracy implies that u is nonconstant.

Step 3. The setM of priors. Define a binary relation ⊵̃ on B0(Ω,Σ, u(X))
as (u ○ f) ⊵̃ (u ○ g)⇔ f ≿ g for all f, g ∈ F . This binary relation is well de-

fined, i.e., if f ′, g′ ∈ F are such that u ○ f = u ○ f ′ and u ○ g = u ○ g′, then
f ≿ g ⇔ f ′ ≿ g′ by the Monotonicity axiom: Indeed, if u ○ f = u ○ f ′ and
u ○ g = u ○ g′, then µ(f(ω), f ′(ω)) = 1 = µ(f ′(ω), f(ω)) and µ(g(ω), g′(ω)) =
1 = µ(g′(ω), g(ω)) for all ω ∈ Ω, and, therefore, f ∼ f ′ and g ∼ g′. Given the

properties of ≿, it is easy to check that ⊵̃ is a preorder that satisfies the

nondegeneracy, archimedean continuity, monotonicity, and independence

conditions of Gilboa, Maccheroni, Marinacci, and Schmeidler (2010, Ap-

pendix B). By their Corollary 1, there exists a nonempty, closed, and convex

setM ⊆ ∆(Ω) such that

f ≿ g ⇔ ⟨u ○ f, p⟩ ≥ ⟨u ○ g, p⟩ for all p ∈M;
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moreover,

M= {p ∈∆(Ω) ∶ Lf,gp ≥ 0 for all f, g ∈ F such that f ≿ g} . (2)

Claim (i) is now proven.

Claim (ii). Suppose that u′ is a nonconstant affine function X → R and

M′ is a closed and convex subset of ∆(Ω) such that Claim (i) holds. By

Nondegeneracy,M′ ≠ ∅. Then, for any x, y ∈ X , µ(x, y) = 1⇔ u′(x)−u′(y) ≥
0. Therefore, as follows from Herstein and Milnor (1953, Theorem 7), u′ is

a positive affine transformation of u. Finally, M = M′ by the uniqueness

part of the same Corollary 1 of Gilboa et al. (2010).

Claim (iii). Suppose, first, that f, f ′ ∈ F are such that u ○ f = u ○ f ′,
and fix an arbitrary g ∈ F . In this case, by the construction of u, we

have µ(f(ω), f ′(ω)) = 1 = µ(f ′(ω), f(ω)) for all ω ∈ Ω. By Monotonic-

ity, µ(f, f ′) = 1 = µ(f ′, f). Then, µ(f, g) = µ(f ′, g) and µ(g, f) = µ(g, f ′) by
Weak Transitivity.

Now, consider the general case: Suppose that f, g, f ′, g′ ∈ F and λ > 0 are

such that (u ○ f)− (u ○ g) = λ((u ○ f ′)− (u ○ g′)). Let k ∈ intu(X) be chosen
arbitrarily, and let x ∈ X be such that u(x) = k and ϕ ∶= (u ○ f) − (u ○ g).
Then, one can find a sufficiently small ε > 0 such that λε < 1, and such that

ψ ∶= 1

1−εu(x)− ε
1−ε(u○g) and ψ′ ∶= 1

1−λεu(x)− λε
1−λε(u○g′) satisfy ψ,ψ′ ∈ u(X)Ω.

Let h,h′ ∈ F be such that ψ = u ○ h and ψ′ = u ○ h′. We observe that

u ○ ((1 − ε)h + εf) = k + εϕ, u ○ ((1 − ε)h + εg) = k,
u ○ ((1 − λε)h′ + λεf ′) = k + εϕ, u ○ ((1 − λε)h′ + λεg′) = k.

Therefore, as follows from the claim proven in the preceding paragraph,

µ((1 − ε)h + εf, (1 − ε)h + εg) = µ((1 − λε)h′ + λεf ′, (1 − λε)h′ + λεg′); at
the same time, µ((1 − ε)h + εf, (1 − ε)h + εg) = µ(f, g) and µ((1 − λε)h′ +
λεf ′, (1 − λε)h′ + λεg′) = µ(f ′, g′) by Independence, and we can conclude

that µ(f, g) = µ(f ′, g′).
7
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Lemma 4. Suppose that µ is a graded preference relation on F that sat-

isfies the Reflexivity, Weak Transitivity, Monotonicity, Independence, C-

Completeness, Continuity, and Nondegeneracy axioms. Then, there exists a

nonconstant affine function u ∶X → R and a nonempty, convex, and closed

set M ⊆ ∆(Ω) such that for any f, g, f ′, g′ ∈ F , {p ∈ M ∶ Lf,gp ≥ 0} ⊆ {p ∈
M ∶ Lf ′,g′p ≥ 0} implies that µ(f, g) ≤ µ(f ′, g′).

Proof. Step 1. Suppose, first, that f, g, f ′, g′ ∈ F are such that {p ∈ M ∶
Lf,gp ≥ 0}∩{p ∈ M ∶ Lf ′,g′p ≤ 0} = ∅. Fix an arbitrary k ∈ intu(X), and find

a sufficiently small ε > 0 such that, for

M ∶=max
ω∈Ω

max{∣u(f(ω))∣, ∣u(g(ω))∣, ∣u(f ′(ω))∣, ∣u(g′(ω))∣},

we have [k − 2εM,k + 2εM] ⊆ u(X). Let ϕ,ψ ∈ B(Ω,Σ,R) be defined as

ϕ ∶= (u ○ f) − (u ○ g) and ψ ∶= (u ○ f ′) − (u ○ g′).
Step 2.We claim that there exists α ∈ (0,1) such that ⟨(1−α)ϕ−αψ,p⟩ ≤ 0

for all p ∈ M. Indeed, suppose, by contradiction, that, for each α ∈ (0,1),
there exists p ∈ M such that ⟨(1−α)ϕ−αψ,p⟩ > 0. Let C1 ∶= {ξ ∈ B0(Ω,Σ,R) ∶
⟨ξ, p⟩ ≤ 0 for all p ∈ M} and C2 be the convex hull of 0, ϕ, and −ψ. Note
that C1 and C2 are closed and convex sets; moreover, C1 has a nonempty

interior: The ball centered at the constant −1 of radius 1

2
is contained in C1

entirely. As follows from our assumption, C1 ∩{(1− t)ϕ− tψ ∣ t ∈ (0,1)} = ∅,
and, therefore, intC1∩C2 = ∅. Then, by the Interior Separating Hyperplane

theorem (Aliprantis and Border, 2006, Theorem 5.67), there exists a nonzero

continuous linear functional L0 on B0(Ω,Σ,R) such that L0ξ ≤ 0 for all

ξ ∈ C1 and L0ξ ≥ 0 for all ξ ∈ C2. This L0 can be represented as L0ξ = ⟨ξ, p⟩ for
all ξ ∈ B0(Ω,Σ,R), where p is some nonzero, bounded, and finitely additive

function Σ → R (Aliprantis and Border, 2006, Lemma 14.31). Notice that

p(E) ≥ 0 for all E ∈ Σ because −1E ∈ C1; therefore, we can assume without

loss of generality that p ∈ ∆(Ω). Then, in fact, p ∈ M, as follows from Step 3
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of the proof of Lemma 9. This means that we have found p ∈ M such that

⟨ϕ,p⟩ ≥ 0 and ⟨ψ,p⟩ ≤ 0, a contradiction to the assumption made in Step 1.

Step 3. Let f∗, g∗, h∗ ∈ F be such that u○f∗ ≡ k, u○g∗ = k+ε(1−α)ϕ−εαψ,
u○h∗ = k−εαψ, and note that such acts exist by the choice of ε. By the result

of the Step 2, we have Lf∗,g∗p ≥ 0 for all p ∈ M, and, therefore, (µ(f∗, g∗) =
1∧ (µ(g∗, f∗) ∈ {0,1})). By Weak Transitivity, this implies that µ(f∗, h∗) ≥
µ(g∗, h∗). Now, observe that (u○f∗)−(u○h∗) = εαψ = εα[(u○f ′)−(u○g′)]
and (u ○ g∗)− (u ○ h∗) = ε(1 −α)ϕ = ε(1 −α)[(u ○ f)− (u ○ g)]. By Part (iii)

of Lemma 9, we have µ(f, g) = µ(g∗, h∗) and µ(f∗, h∗) = µ(f ′, g′), which
proves (under the assumption of Step 1) that µ(f, g) ≤ µ(f ′, g′).
Step 4. Now, let f, g, f ′, g′ be arbitrary acts such that {p ∈ M ∶ Lf,gp ≥ 0} ⊆
{p ∈ M ∶ Lf ′,g′p ≥ 0}. Fix an arbitrary k ∈ intu(X), let x0, x1 ∈ X be such

that u(x0) = k and u(x1) > u(x0), and f ′′, g′′ ∈ F be defined as f ′′ ∶= 1

2
x0+ 1

2
f ′

and g′′ ∶= 1

2
x0 + 1

2
g′, and observe that (u○f ′′)−(u○g′′) = 1

2
[(u○f ′)−(u○g′),

and, therefore, {p ∈ M ∶ Lf ′′,g′′p ≥ 0} = {p ∈ M ∶ Lf ′,g′p ≥ 0}. Finally, let
f ′′t ∶= 1

2
(1 − t)x0 + 1

2
tx1 + 1

2
f ′ for all t ∈ [0,1], and note that f ′′

0
= f ′′.

We claim that {p ∈ M ∶ Lf ′′,g′′p ≥ 0} ⊆ {p ∈ M ∶ Lf ′′
t
,g′′p ≥ 0} and {p ∈

M ∶ Lf,gp ≥ 0} ∩ {p ∈ M ∶ Lf ′′
t
,g′′p ≤ 0} = ∅ for all t ∈ (0,1]. Indeed, for

all p ∈ ∆(Ω), we have Lf ′′
t
,g′′p = Lf ′′,g′′p + 1

2
t[u(x1) − u(x0)], and, therefore,

Lf ′′,g′′p ≥ 0 implies Lf ′′
t
,g′′p > 0.

Given the above no-intersection property, we have µ(f, g) ≤ µ(f ′′t , g′′)
for all t ∈ (0,1], as proven earlier. By Continuity, this implies µ(f, g) ≤
µ(f ′′, g′′). Since µ(f ′′, g′′) = µ(f ′, g′) by Part (iii) of Lemma 9, the proof of

the lemma is now complete.

Proof of Theorem 1. Only if part. Assume that µ is a graded preference

relation on F that satisfies the Reflexivity, Weak Transitivity, Monotonicity,

C-Completeness, Independence, Continuity, and Nondegeneracy axioms.

Step 1. Let function u ∶ X → R and set M ⊆ ∆(Ω) be as described in

Lemma 3. Let K ∶= u(X), H ∶= {{p ∈ M ∶ Lf,gp ≥ 0} ∣ f, g ∈ F}, and let
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π ∶ H → [0,1] be defined as π({p ∈ M ∶ Lf,gp ≥ 0}) ∶= µ(f, g). By Lemma 4,

such π is well defined: If f, g, f ′, g′ ∈ F are such that {p ∈ M ∶ Lf,gp ≥ 0} =
{p ∈ M ∶ Lf ′,g′p ≥ 0}, then it must be that µ(f, g) = µ(f ′, g′). By the same

lemma, π is monotone, and it is normalized by construction.

Step 2. To prove the linear continuity of π, consider an arbitrary noncon-

stant L ∈ L, and suppose that Lp = ⟨ϕ,p⟩, where ϕ ∈ B0(Ω,Σ,R).
Let k ∈ intK be chosen arbitrary, and let ε > 0 be a sufficiently small

number such that [k − 3ε∥ϕ∥, k + 3ε∥ϕ∥] ⊂K. Let ξ ∶= k + εϕ, and note that

Lp = 1

ε
⟨ξ − k, p⟩ for all p ∈ M. Our objective is to prove that the function

F ∶ R→ R defined as F (α) ∶= π({p ∈ M ∶ ⟨ξ − k, p⟩ ≥ α}) is continuous.
First, let α ∶= sup{α ∈ R ∶ ∀p∈M⟨ξ − k, p⟩ ≥ α}, α ∶= inf{α ∈ R ∶ ∀p∈M⟨ξ −

k, p⟩ < α}, and observe that F is monotone, F (α) = 1 for all α < α, and
F (α) = 0 for all α > α.
Second, we note that α > −2ε∥ϕ∥ and α < 2ε∥ϕ∥, and, therefore, for any

α ∈ [α,α], we have ξ−α ∈KΩ by the choice of ε. Hence, there exist x ∈X and

f, g ∈ F such that k = u(x), ξ−α = u○f , and ξ−α = u○g. Let fα ∶= α−α
α−αf+α−α

α−αg,

and note that the mapping α ↦ fα is continuous on [α,α]. It is easy to verify

that u○fα = ξ−α, and, thus, F (α) = π({p ∈ M ∶ ⟨ξ, p⟩−α−k ≥ 0}) = µ(fα, x)
for all α ∈ [α,α].
Finally, we observe that there is no α ∈ [α,α] such that µ(fα, x) = 1 =

µ(x, fα): Otherwise, as follows from Claim (i) of Lemma 3, we would have

⟨εϕ − α,p⟩ = 0 for all p ∈ M, which contradicts to L being nonconstant.

Therefore, µ(fα, x) is continuous in α by the Continuity axiom, and the

continuity of F is proven.

Step 3.To prove that π has linear full support, suppose that ϕ ∈ B0(Ω,Σ,R)
is such that ⟨ϕ, q⟩ < 0 for some q ∈ M. Let k ∈ intK be arbitrary, and ε > 0
be a sufficiently small number such that k + εϕ ∈KΩ. Finally, let x ∈X and

f ∈ F be such that u(x) = k and u ○ f = k + εϕ. By Claim (i) of Lemma 3,

Lf,xq < 0 implies that µ(f, x) < 1 or µ(x, f) ∉ {0,1}.
10
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Step 4. Now, we extend π from H to B(M). For any S ∈ B(M), let
π̂(S) ∶= sup{π(S ′) ∣ S ′ ∈ H,S ′ ⊆ S}. As follows from the monotonicity of π,

π̂ agrees with π on the intersection of their domains: π̂(S) = π(S) for all

S ∈ H. Therefore, Representation (1) holds for π̂, as well. Monotonicity and

normalization of π̂ follow from the monotonicity of π. Finally, linear conti-

nuity and linear full support of π̂ hold immediately because these properties

operate with the values of π̂ on sets that always belong to H.

If part. Assume that there exist a nonconstant affine function u ∶X → R,

a nonempty, convex, and closed setM ⊆∆(Ω), and a capacity π ∶B(M)→
[0,1] such that Representation (1) holds. As directly follows from (1), µ sat-

isfies Reflexivity, Monotonicity, C-Completeness, and Independence. Non-

degeneracy of µ follows from u being nonconstant.

To prove Weak Transitivity, suppose f, g ∈ F are such that µ(f, g) = 1 and
µ(g, f) ∈ {0,1}. Let h ∈ F be arbitrary. Since π has linear full support, it

follows that ⟨u○f, p⟩ ≥ ⟨u○g, p⟩ for all p ∈M. Consequently, {p ∈M ∶ Lf,hp ≥
0} ⊇ {p ∈M ∶ Lg,hp ≥ 0}, and {p ∈M ∶ Lh,gp ≥ 0} ⊇ {p ∈M ∶ Lh,fp ≥ 0}. By
the monotonicity of π, we have µ(f,h) ≥ µ(g, h) and µ(h, g) ≥ µ(h, f).
To prove Continuity, fix f, g, h ∈ F and α ∈ [0,1] such that µ(αf + (1 −

α)g, h) < 1 or µ(h,αf + (1 − α)g) < 1, and consider a sequence (αn)∞n=1 of

numbers in [0,1] such that αn → α. Let M ∶= supω∈Ω∣u(f(ω)) − u(g(ω))∣,
and notice that M < ∞ because f and g take only finitely many values.

Then,

∥(u ○ (αnf + (1 −αn)g)) − (u ○ (αf + (1 − α)g))∥ =
∥(αn − α)(u ○ f) − (αn − α)(u ○ g)∥ ≤ ∣αn − α∣ ⋅M.

Therefore, for any ε > 0, there exists N ∈ N such that, for all n > N ,

Lαf+(1−α)g,hp − ε ≤ Lαnf+(1−αn)g,hp ≤ Lαf+(1−α)g,hp + ε
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for all p ∈ ∆(Ω). Hence,
{p ∈M ∶ Lαf+(1−α)g,hp ≥ ε} ⊆ {p ∈M ∶ Lαnf+(1−αn)g,hp ≥ 0} ⊆

{p ∈M ∶ Lαf+(1−α)g,hp ≥ −ε}
for all n > N , which implies that

π({p ∈M ∶ Lαf+(1−α)g,hp ≥ ε}) ≤ π({p ∈M ∶ Lαnf+(1−αn)g,hp ≥ 0}) ≤
π({p ∈M ∶ Lαf+(1−α)g,hp ≥ −ε})

for all n > N by the monotonicity of π. Thus, we obtain

π({p ∈M ∶ Lαf+(1−α)g,hp ≥ ε}) ≤
lim infn→∞ π({p ∈M ∶ Lαnf+(1−αn)g,hp ≥ 0}) ≤
limsupn→∞ π({p ∈M ∶ Lαnf+(1−αn)g,hp ≥ 0}) ≤

π({p ∈M ∶ Lαf+(1−α)g,hp ≥ −ε})
(3)

for all ε > 0. Now, we observe that Lαf+(1−α)g,h cannot be a zero constant

on M due to the assumption that µ(αf + (1 − α)g, h) < 1 or µ(h,αf +
(1 − α)g) < 1. If Lαf+(1−α)g,h is a positive constant on M, then π({p ∈M ∶
Lαf+(1−α)g,hp ≥ ε}) = 1 = π({p ∈M ∶ Lαf+(1−α)g,hp ≥ −ε}) for all sufficiently

small positive ε; similarly, if Lαf+(1−α)g,h is a negative constant onM, then

π({p ∈ M ∶ Lαf+(1−α)g,hp ≥ ε}) = 0 = π({p ∈ M ∶ Lαf+(1−α)g,hp ≥ −ε}) for
all sufficiently small positive ε. Finally, if Lαf+(1−α)g,h is nonconstant on

M, then, by the linear continuity of π, the left-most and the right-most

parts of (3) converge to π({p ∈M ∶ Lαf+(1−α)g,hp ≥ 0}). This all proves that
limn→∞ µ(αnf + (1−αn)g, h) = µ(αf + (1−α)g, h). The symmetric equality

can be proven similarly.

Lemma 5. Suppose µ is an affine graded preference relation with the rep-

resentation (u,M, π), f, g ∈ F are such that there exists p ∈M such that

⟨u ○ f, p⟩ ≠ ⟨u ○ g, p⟩ for some p ∈M, and let B ∶= {p ∈M ∶ ∫ (u ○ f)dp ≥
∫ (u ○ g)dp}. Then, π(M/B) = µ(g, f).
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Proof. First, we consider the case that Lf,g is constant onM — i.e., there

exists c ∈ R/{0} such that Lf,gp = c for all p ∈M. If c > 0, thenM/B = {p ∈
M ∶ Lf,gp < 0} = ∅ = {p ∈M ∶ Lf,gp ≤ 0}, and π(M/B) = µ(g, f). Similarly,

if c < 0, then M/B = {p ∈ M ∶ Lf,gp < 0} = M = {p ∈ M ∶ Lf,gp ≤ 0},
and π(M/B) = µ(g, f). Finally, if Lf,g is nonconstant on M, then, by the

monotonicity of π, we observe limsupε→0+ π({p ∈M ∶ Lg,fp ≥ ε}) ≤ π({p ∈
M ∶ Lg,fp > 0}) ≤ π({p ∈M ∶ Lg,fp ≥ 0}), which implies that π({p ∈M ∶
Lg,fp > 0}) = π({p ∈M ∶ Lg,fp ≥ 0}) by the linear continuity of π.

Proof of Theorem 2. Only if part. Suppose µi, where i = 1,2 are affine

graded preferences with the representations (ui,Mi, πi), and µ1 is more

decisive than µ2. Let ≿i, where i = 1,2, be binary relations on F defined as

f ≿i g ⇔ (µ(f, g) = 1) ∧ (µ(g, f) ∈ {0,1}). Since µ1 is more decisive than

µ2, we have ≿2 ⊆ ≿1. By Claim (i) of Lemma 3, binary relations ≿i, where
i = 1,2, admit representations f ≿i g⇔ (∀p∈Mi

⟨ui ○ f, p⟩ ≥ ⟨ui ○ g, p⟩). Then,
Claims (i) and (ii) follow from the proof of Proposition 6 of Ghirardato,

Maccheroni, and Marinacci (2004).

We now turn to proving Claim (iii). Fix an arbitrary B ∈ H2; by the

definition of H2, there exist f, g ∈ F such that B = {p ∈M2 ∶ ∫ (u2 ○ f)dp ≥
∫ (u2 ○ g)dp}.
Suppose that π2(B) ≥ π2(M2/B). We observe, first, that µ2(f, g) ≥

µ2(g, f): Indeed, if ⟨u2 ○ f, p⟩ = ⟨u2 ○ g, p⟩ for all p ∈M2, then µ2(g, f) = 1 =
µ2(f, g); otherwise, by Lemma 5, µ2(g, f) = π(M2/B) ≤ π(B) = µ2(f, g).
Then, µ2(f, g) ≤ µ1(f, g) because µ1 is more decisive, and we obtain π2(B) =
µ2(f, g) ≤ µ1(f, g) = π1(B1), where B1 ∶= {p ∈ M1 ∶ ∫ (u1 ○ f)dp ≥ ∫ (u1 ○
g)dp}. Finally, we observe that B1 is equal to {p ∈ M1 ∶ ∫ (u2 ○ f)dp ≥
∫ (u2 ○g)dp} by Claim (i), and, in turn, toM1∩B by Claim (ii). Therefore,

we have π2(B) ≤ π1(M1⋂B).
If B ∈ H2 is such that π2(B) ≤ π2(M2/B), the facts that µ2(f, g) ≤

µ2(g, f) and, in turn, π2(B) ≥ π1(M1⋂B) can be proven by an argument
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symmetric to the one for the previous case.

If part. Suppose that Conditions (i), (ii), and (iii) of the proposition hold,

and fix arbitrary f, g ∈ F .
If µ2(f, g) ≥ µ2(g, f), then

π2({p ∈M2 ∶ ∫ (u2 ○ f)dp ≥ ∫ (u2 ○ g)dp}) ≥
π2({p ∈M2 ∶ ∫ (u2 ○ f)dp < ∫ (u2 ○ g)dp}) .

This follows from Lemma 5 if ⟨u2 ○ f, p⟩ ≠ ⟨u2 ○ g, p⟩ for some p ∈M2, and is

immediate otherwise, given that π2(M2) = 1 and π2(∅) = 0. Then,
π2(B) ≤ π1(M1 ∩B) by (iii)

= π1({p ∈M1 ∶ ∫ (u2 ○ f)dp ≥ ∫ (u2 ○ g)dp}) by (ii)

= π1({p ∈M1 ∶ ∫ (u1 ○ f)dp ≥ ∫ (u1 ○ g)dp}) by (i).

Therefore, we have µ2(f, g) ≤ µ1(f, g).
If µ2(f, g) ≤ µ2(g, f), then

π2({p ∈M2 ∶ ∫ (u2 ○ f)dp ≥ ∫ (u2 ○ g)dp}) ≤
π2({p ∈M2 ∶ ∫ (u2 ○ f)dp < ∫ (u2 ○ g)dp})

follows, again, from Lemma 5 (and the case that ⟨u2 ○ f, p⟩ = ⟨u2 ○ g, p⟩ for
all p ∈M2 is now impossible). Given that, the proof that µ2(f, g) ≥ µ1(f, g)
proceeds symmetrically to the previous case.
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