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This paper studies the behavioral trait of aversion to making mistakes. I

use the framework of subjective uncertainty to develop a choice procedure that

captures mistake aversion along the lines of robust decision making: For each

probability distribution (prior) that may plausibly describe the underlying un-

certainty, the decision maker computes his expected utility and discards the

feasible choice options that cannot guarantee a particular level of utility rela-

tive to an exogenously given default option. The paper then follows the revealed

preference approach to study the behavioral foundations of this procedure and

the comparative notion of mistake aversion. In an application to finance, I show

that mistake aversion leads to an increase of the risk premia. The effects of the

volatility of payoffs on asset prices/returns are also found to be potentially dif-

ferent than in the predictions of the standard expected utility theory and the

maxmin model of ambiguity aversion.

1 Introduction

The standard subjective expected utility paradigm postulates that an eco-

nomic agent, when facing uncertainty with unspecified probabilities, brings

forth his subjective probability measure and, then, ranks alternatives by the

mathematical expectation of his utility function computed with respect to
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that measure. However, it is now well known that this paradigm falls short of

explaining much of the empirical observations found in experimental stud-

ies. Moreover, even when agents can plausibly formulate a single prior to

evaluate likelihoods of uncertain events, their aptitude for risk taking can-

not always be explained fully by the concavity of their utility function. The

limited descriptive power of the subjective expected utility theory mani-

fests well beyond the lab, and issues such as the equity premium puzzle are

frequently addressed by using more-permissive models of preferences that

allow for ambiguity aversion, habits, preference for flexibility, and other

phenomena.

This work is motivated by a behavioral trait that has not been explicitly

studied in literature so far: the decision maker’s concern about making mis-

takes. The prevalence of this concern is self-evident; this paper, however,

restricts attention to the domain of uncertainty and focuses on a particular

type of mistake that consists of using a wrong prior in the ex ante decision,

which results in a substantial loss.

Thus, the ultimate goal of this work is to understand how to model cau-

tious choice under uncertainty that is driven by mistake aversion. To address

this issue, the paper studies both the formal behavioral patterns that dis-

tinguish mistake aversion from other types of cautious behavior, including

standard risk aversion, and the procedural deviations from expected utility

maximization.

The choice procedure proposed in this paper follows the general approach

of robust decision making and ensures that inaccuracies in estimating the

probabilities of events do not lead to mistakes: First, for each alternative

probability distribution that may plausibly describe the uncertainty, the

agent computes his expected utility and discards those feasible choice op-

tions that cannot guarantee a particular level of utility relative to his default

option (or another salient safe choice). Second, among the remaining alter-
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natives, he chooses the one that maximizes his expected utility computed

with respect to his leading prior.

The main theoretical result of this work consists of establishing the ax-

iomatic foundations of the proposed procedure. The foundations help to

ensure that the procedure is consistent with the objective of modeling mis-

take aversion, to clarify its scope, to differentiate it from other models, and

to potentially test it in the lab. In addition, the paper defines and char-

acterizes the notion of “being more mistake-averse than,” which is needed

for comparative statics and may be useful for calibrating the model and

interpreting both its predictions and its implied policy recommendations.

Finally, the paper contains a small example that demonstrates the usage of

the model in a general equilibrium setting and illustrates possible implica-

tions of mistake aversion for asset prices.

Now, a more detailed description of the proposed choice procedure is in

order. Suppose that uncertainty is represented by a nonempty finite space Ω

of the states of nature and that the alternatives are represented by vectors

of state-contingent payoffs (traditionally called acts). The decision problem

that the agent faces is to pick the best alternative from a finite set of such

vectors.

As a part of the framework, I also assume that each set of alternatives

is presented to the decision maker with one option marked as the default ;

moreover, this default represents a course of action that is always viewed as

a safe choice. Therefore, each choice problem represents a situation in which,

loosely speaking, “higher returns” are associated with higher risks, and the

decision maker is asked to decide whether he prefers the safe option or is

willing to take some risk in exchange for the prospect of a better outcome.

My assumptions about the default also imply that, in each choice set,

the analyst can identify one option that is unquestionably safe. Such a safe

option can be identified relatively naturally in many potential applications,
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such as the savings problem (in which the agent can consume his endow-

ment); portfolio choice (investment at the risk-free rate rather than risky

assets); bargaining and contracts (taking the outside option); and job search

(maintaining the current employment status and employer), just to name a

few.1

Thus, the problem that the decision maker faces is to identify his preferred

alternatives from a nonempty finite set of acts S (the feasible set), given a

safe option d in S. In my model, the decision maker is described by a utility

function u taking values in R+; a prior p over Ω; a set M of probability

distributions over Ω that represents the collection of alternative scenarios

that he considers; and, finally, a “tolerance” function k ∶ M → [0,1]. His
choice, then, is obtained by solving the following optimization problem:

Maximize
f∈S

∑
ω∈Ω

u(f(ω))p(ω)
s.t. ∑

ω∈Ω

u(f(ω)) q(ω) ≥ k(q) ∑
ω∈Ω

u(d(ω)) q(ω) for all q ∈M.

This choice procedure can be viewed as a two-stage process. In the first

stage, captured by the constraints, the decision maker eliminates from his

feasible set all alternatives that may be potential mistakes. An alternative

becomes a mistake if choosing it leads to the loss of the agent’s expected

utility relative to the expected utility of the safe option, and that loss ex-

ceeds a certain threshold. The expectations in this stage are computed using

all plausible scenarios that are represented by the corresponding probabil-

ity distributions, and the alternative is discarded if it can be regarded as a

mistake under at least one scenario. In the second stage, the decision maker

maximizes his expected utility among the alternatives that have not been

1Indeed, there is now a growing literature on the theory of choice in the presence

of status quo, default options, or anchors — this literature will be discussed later in

Section 2.
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eliminated in the first stage.2 Note that the default option always passes

the first stage, so the maximization is done over a nonempty set, and the

decision maker’s choice is always well-defined.

The function k(q) in the representation can be interpreted as the decision

maker’s tolerance to losses: If, for example, k(q0) = 0.95 for some q0 in

M, it means that the decision maker can tolerate, without experiencing

overwhelming negative feelings, the situation in which he discovers that

the right probability distribution to evaluate the likelihoods of the states

is q0 but not p, and he loses 5% of his (expected) wealth as a result. In

addition, as elaborated later, the function k also embodies the decision

maker’s opinion about the relevance of various probability distributions.

The standard expected utility preferences can be viewed as a special case

of this model if we let k(q) = 0 for all q (or ifM = ∅).

The main result of this paper shows that the choice procedure described

above arises from a relatively simple set of axioms. The first axiom is a ver-

sion of the Weak Axiom of Revealed Preference that is adapted to a setting

with an exogenous default. The second axiom is a restricted version of the

classical Anscombe-Aumann Independence axiom that covers only the sit-

uations in which the alternatives in question are undoubtedly not potential

mistakes. The third axiom is scale invariance, which is akin to positive ho-

mogeneity and ensures that the agent’s preferences remain unaffected if the

payoff profiles are modified in such a way that the utility levels in all states

are multiplied by a constant. As an implication, if, in addition, the agent’s

utility function over risk has the constant relative risk aversion property,

this preserves the overall independence of choice from the scale. Finally,

I have two novel axioms that describe situations in which the agent may

justify his choice of a non-default alternative in one situation by referring

2If necessary, the model can also be extended to include a non-expected utility func-

tional to be maximized in the second stage.
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to another choice situation, in which the agent chose a related non-default

alternative and, hence, determined that it was not a potential mistake.3

These axioms, together with standard technical conditions, are found nec-

essary and sufficient to conclude that the agent chooses in agreement with

the proposed procedure.

As an application, I illustrate the implications of mistake aversion for

asset prices in a simple endowment economy. The economy consists of two

agents, one of whom has standard expected utility preferences, and two as-

sets — one riskless and one with log-normal gross payoffs. The presence of

mistake aversion leads to a noticeable departure of equilibrium prices from

the predictions of the standard expected utility theory and the maxmin

model of ambiguity aversion. First, my economy has a higher risk premium

in comparison with a similar economy populated only by expected utility

maximizers. Second, mistake aversion changes the way the agents’ willing-

ness to take risks depends on the volatility of the risky asset’s payoffs. The

effects of mistake aversion can be summarized as follows: If the agents’ risk

aversion is estimated using the data collected in an environment in which the

volatility of payoffs is low, then the equilibrium risk premium of medium-

volatility assets will be higher than the predictions of the standard expected

utility model. At the same time, in high-volatility environments, the agents

are willing to take more risk than can be expected solely on the basis of the

risk aversion that they manifest in medium-volatility environments. Such a

double-sided effect does not arise in the maxmin model. In addition, in the

3One justification of this kind may be described as follows: Suppose that an act A

was chosen over a default D, A can be represented as a mixture of a and some other

act A′, and b dominates a in every possible state of the world. Then, it is not a mistake

to choose over D an act B obtained from A by replacing a with b in the mixture. Two

axioms stated in Section 4.2 describe more general situations in which a similar intuition

applies.
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range of low to medium volatilities, my model predicts a higher sensitivity

of the volatility of asset prices to the volatility of payoffs.

The rest of the paper is organized as follows. In Section 2, I discuss the

related literature and compare my model with the existing models of regret,

anchoring and status quo bias, and ambiguity. In Section 3, I illustrate the

model by computing equilibrium equity premiums in an economy populated

by expected utility and mistake-averse agents. The mathematically precise

description of the model, its axiomatic foundations, and comparative statics

results are provided in Section 4. All proofs are gathered in the appendices.

2 Related Literature

This research is related to three broad branches of literature — the theory

of regret; the theory of anchoring, including status quo bias and endowment

effects; and robust decision making, including the theory of ambiguity.

Theory of regret The literature on regret, starting with the seminal

work of Savage (1951) and continued by Bell (1982) and Loomes and Sugden

(1982), as well as recent contributions of Hayashi (2008) and Stoye (2011),

studies agents who are subject to regret, “. . . a negative, cognitively based

emotion that we experience when realizing or imagining that our present

situation would have been better, had we decided differently.”4 The decision-

theoretic analysis then focuses on the ex ante behavior of agents who are

forward-looking, understand that many of their choices will lead to ex post

regret, and want to minimize that feeling.

The structure of the models in this literature implies that the agent may

experience regret in quite a few states and decision problems, and his nega-

tive emotion is based on the implicit assumption that he could have perfectly

4Zeelenberg (1999, p. 94).
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predicted the realized state.5 In contrast, in my work, the agent does not

suffer psychological penalties from his inability to predict the state, but he is

concerned about having a flawed basis for his choice — a wrong probability

law for computing his expected utility.

Another notable difference between the classical theory of regret and my

model involves internal consistency of choices. The majority of models in

that literature exhibit the lack of transitivity, while the choice procedure

proposed in this paper does not have this issue.6

Theories of anchoring effects The setup of my work — choice from a

set given a default option — connects it to the choice-theoretic literature on

modeling the framing effect, which follows the general framework proposed

by Salant and Rubinstein (2008) and covers the status quo bias and the

effects of endowment, default option, and other types of anchoring.

Masatlioglu and Ok’s (2013) canonical model of choice with status quo

represents the agent’s choice as c(S,d) = Argmaxx∈S∩Q(d)U(x), where U
is the agent’s utility function and Q is a nonempty-valued correspondence

that determines the agent’s mental constraints. The choice procedure that I

propose follows this general form. At the same time, the effect of the default

option is not a primary object of study in this work. Rather, its presence

serves as a tool to understand better how the agent makes choices that are

5For example, a decision maker who follows the classical Savage’s model would feel

excruciating regret after hearing that 10, 13, 14, 22, 52 and 11 were the winning numbers

of the the Powerball drawing on May, 18th, 2013, the jackpot of which totaled almost

600 million dollars. The reason is that he could have chosen exactly these numbers, but

did not, either choosing different numbers or not playing on that day. Such ex post

suboptimality of actions is exactly what is assumed to cause negative emotions; in turn,

anticipation of such emotions is what drives the agent’s decisions at the ex ante stage in

those models.
6Indeed, as will become clear in Section 4, my model satisfies a version of the Weak

Axiom of Revealed Preference.
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robust to possible inaccuracies in his probabilistic model of the world.

Departing from the popular technique of studying an agent by comparing

his choices from the same set with and without the presence of the status

quo,7 the results of this paper rely only on choices in the presence of a default

option, thus making fewer assumptions about what is observable. Also, my

choice procedure is not consistent with some of the key axioms proposed in

this literature, such as the Status Quo Bias axiom of Masatlioglu and Ok

(2005) (also used in Ortoleva, 2010), Strong Axiom of Status Quo Bias of

Masatlioglu and Ok (2013), and Sagi’s (2006) No-Regret condition. Many

of these axioms lose their normative appeal when the “decision frame” d is

interpreted as a blame-free reference point rather than an element of the

choice set that gains in attractiveness because of its current status as an

endowment or status quo.

Two papers in this branch of literature — Ortoleva (2010) and Riella

and Teper (2012) — apply the ideas of status quo bias to the domain of

uncertainty, which makes their representations easier to compare with mine.

Ortoleva’s (2010) model does not put structure on the agent’s choices among

options that are not ruled out by the presence of the status quo, whereas

I assume that the decision maker maximizes his expected utility in that

subdomain. However, the psychological effects of the status quo in his model

have a much simpler form: Barring other differences,8 they correspond to the

special case of my model in which the function k is allowed to take values of

only zero or one. In the main representation of Riella and Teper (2012), the

additional psychological constraints declare an act choosable if it satisfies

the lower bound on the probability of the states of the world in which this act

under-performs relative to the default option by a certain margin. The choice

7A notable exception to that is Sagi (2006).
8At the level of setup, he studies preferences instead of choice functions; in addition,

choice in his model is discontinuous.
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procedure implied by this representation clearly captures a different type

of behavior than the trait of mistake aversion that is studied in this paper:

Indeed, it does not address the decision maker’s concerns that he might be

making the mistake of using a probability distribution that is slightly off —

on the contrary, it puts even more emphasis on using the right probability

distribution because it enters not only his objective function, but also the

additional constraints.

Robust decision making and ambiguity The objective of the the-

ory of ambiguity is to model an agent who is not sure of the probability

law governing the uncertainty; ambiguity aversion, then, results in decision

processes that are robust to misspecifications of the prior.

Gilboa and Schmeidler’s (1989) seminal work develops a model of maxmin

preferences, in which the agent considers a collection of plausible probability

distributions; however, he does not discriminate among them and evaluates

each of his actions using the one that represents the worst-case scenario.

The subsequent works of Maccheroni, Marinacci, and Rustichini (2006) and

Chateauneuf and Faro (2009) propose models of variational and confidence

preferences, respectively, which can accommodate broader types of choice

behavior in terms of the type of violations of the Independence axiom that

they allow.

The idea of robust decision making is applied to studying macroeconomic

problems in a series of papers starting with Hansen and Sargent (2001).

Their constrained preferences model, however, is much closer to the maxmin

model than to mine, as they impose constraints on the set of the agent’s

beliefs rather than on his possible courses of action.

In a separate branch of the literature, Mihm (2010) proposes a modifica-

tion of the maxmin model to include an anchor — an act that serves as a

reference point for evaluating all other uncertain prospects. Then, the eval-

10

Date: 2014-02-21 06:32:22 Revision: 1.37



uation of the anchor stays the same under all the probability distributions

that the agent considers, and, hence, the anchor becomes an unambiguous

prospect. In turn, the evaluations of constant acts may vary under different

probability distributions, and such acts become potentially ambiguous.

The choice procedure proposed in this paper is also related to Hodges

and Lehmann’s (1952) restricted Bayesian solution in statistical decision

theory. In comparison with that procedure, my decision maker is generally

not concerned about losses for each realization of uncertainty, but about

expected losses under alternative probabilistic models. In addition, the ad-

missibility constraints in my model have a different structure: They depend

on the exogenous “safe” option and aim to guarantee a particular fraction

of the payoff guaranteed by that safe option.

3 An Application

In this section, I illustrate my model by computing the demand for and

price of a risky asset in a general equilibrium setting.

Consider a one-period economy with two agents and two assets — 1) a se-

curity whose payoff is distributed log-normally with the parameters (µ,σ2);
and 2) cash. Further, suppose that Agent B has expected utility preferences

with CRRA utility function with the risk aversion of γ > 1 and has correct

beliefs about the distribution of the payoffs of the risky asset; at the same

time, Agent A conforms to the mistake-aversion model with the same utility

function, the same belief, and the tolerance function k that takes the value

of k0 on the distribution lnN(µ − βσ,σ2) — that is, the agent considers

the possibility that the expected return of the risky asset may be lower. I

also assume that, from Agent A’s point of view, the safe option is to hold

only cash. Finally, let (wA
r ,w

A
c ) and (wB

r ,w
B
c ) denote the endowments of

the agents — the risky asset and cash, respectively — and let p denote the
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price of the risky asset (in units of cash).

Then, the equilibrium in this economy is described by the following con-

ditions:

zA = Argmax
z∈[0,wA

r +w
A
c /p]
∫ u(zet +wA

c + p(wA
r − z)) 1√

2πσ2
e−
(t−µ)2

2σ2 dt

s.t. k0∫ u(zet +wA
c + p(wA

r − z)) 1√
2πσ2

e−
(t−µ+βσ)2

2σ2 dt ≥ u(wA
c + pw

A
r ),

zB = Argmax
z∈[0,wB

r +w
B
c /p]
∫ u(zet +wB

c + p(wB
r − z)) 1√

2πσ2
e−
(t−µ)2

2σ2 dt,

zA + zB = wA
r +w

B
r .

Although Agent A’s preferences are described through a choice correspon-

dence rather than through a binary relation, his demand is, nevertheless,

a well-defined and continuous function of price, and the equilibrium exists

and is unique for nondegenerate values of the parameters.

As a technical remark, note that, in this optimization problem, the multi-

plier k0 appears on the left-hand side of the inequality instead of the right-

hand side, as in the Introduction. The reason for this is that the assumptions

of this exercise do not exactly match the earlier description of my model:

There, I assumed that the decision maker’s utility function is bounded from

below by zero; here, however, the CRRA utility function u(x) = 1

1−γx
1−γ is

bounded by zero from above if the risk-aversion parameter γ is greater than

one. The negative values in the inequalities require changing the way the

tolerance parameter enters the expression.

The typical shape of Agent A’s demand — zA as a function of p — is de-

picted in Figure 1. As the figure shows, the curves representing the demands

of the mistake-averse and expected utility agents diverge for intermediate

values of the price p, and coincide when p is either very low or very high.

Indeed, there exists a sufficiently low price pl such that holding the risky

asset dominates holding cash even under the alternative scenario (mean pa-

rameter of the distribution equal to µ − βσ), and Agent A chooses to hold
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Figure 1.— Demand for a risky asset

The Mistake Aversion line depicts Agent A’s demand, zA(p). The

Expected Utility line is the demand of Agent A if he, instead, has expected

utility preferences with the same risk-aversion parameter. The picture also

shows the supply of the asset in the market from Agent A’s perspective,

wA
r +w

B
r − z

B(p). The values of the parameters are µ = 1

8
, σ = 1

2
, γ = 2,

k0 = 0.98, β =
1

2
, wA

c = w
B
r = 1, w

A
r = w

B
c = 0.

zero cash for both types of his preferences.9 Similarly, there exists a suffi-

ciently high price ph such that even the expected utility agent chooses not

to hold any risky asset. Since k0 is strictly less than one, the demands of the

mistake-averse and expected utility agents also coincide for prices slightly

lower than ph.

Next, Figure 2 illustrates the equilibrium expected returns of the risky

asset. It shows the value of E[x/p], where x ∼ lnN(1
2
σ2, σ2) and p is the

9Note, also, that, in this example, the agent never shorts cash or the risky asset because

doing so would imply negative consumption in some states of the world, which gives him

infinitely negative utility.
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Figure 2.— Equilibrium returns of the risky asset

The Mistake Aversion line depicts, on the logarithmic scale, the expected

returns of the risky asset in the economy where Agent A has mistake-averse

preferences. The Expected Utility line represents the economy in which

Agent A has expected utility preferences instead. The values of the

parameters are γ = 2, k0 = 0.98, β = 1, w
A
c = w

B
r = 1, w

A
r = w

B
c = 0.

equilibrium price, as a function of the volatility parameter σ. The two curves

on the figure represent the economy described above and, for comparison, a

similar economy in which Agent A has expected utility preferences instead

of mistake-averse preferences. If Agent A is mistake-averse, he is less willing

to hold the risky asset, and that raises the equilibrium risk premium. For

the values of the parameters used in the figure and the risky asset with

σ = 0.2 (which roughly corresponds to the volatility of the annual returns of

the S&P500 index), the risk premium increases from about 4% to about 7%.

In the presence of mistake-averse agents, the risk premium is higher than

the prediction based solely on risk aversion, and this fact can potentially
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contribute to a better understanding of the risk premium puzzle.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Σ

1.0

1.2

1.4

1.6

1.8

2.0

Log@E@RDD�Σ2

EU, ΓA,B=3

EU, ΓB=2 and ΓA=3

Maxmin

Mistake Aversion

Expected Utility, ΓA,B=2

Figure 3.— Equilibrium returns of the risky asset across models

The combinations of the models used in the graph are as follows.

Agent A Agent B

EU, γ = 2 EU, γ = 2

Mistake averse EU, γ = 2

Maxmin EU, γ = 2

EU, γ = 3 EU, γ = 2

EU, γ = 3 EU, γ = 3

The maxmin agent is assumed to have two priors, lnN(1
2
σ2, σ2) and

lnN(1
2
σ2 − βσ,σ2). The values of the rest of the parameters are k0 = 0.98,

β = 1, wA
c = w

B
r = 1, w

A
r = w

B
c = 0.

The effect of mistake aversion on the increase of the risk premium is,

however, not uniform. As Figure 3 illustrates, one prior in the support of

k raises risk premiums for the moderate levels of the volatility parameter

σ; however, if the levels of volatility are either very low or very high, mis-

take aversion does not have that effect. The intuitive reasons for that are as
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follows. When σ is very low, the risky asset becomes an almost perfect sub-

stitute for cash, which implies a reduced sensitivity of the agent’s expected

utility to the composition of his portfolio. Then, if the tolerance parameter

k0 is less than one, the additional constraint in the agent’s problem becomes

not binding. At the other end of the spectrum, when σ is high, the agent’s

default of holding no risky assets becomes too conservative, as it ignores

the potential upside. The agent, then, wants to hold at least some of the

risky asset, and, as σ increases, the range of holdings that dominate the

default widens. Eventually, the additional constraint in the agent’s problem

becomes not binding again.

The depicted shape of the returns is a feature of mistake aversion that

makes it distinct from other types of cautious behavior, such as increased

risk aversion or ambiguity aversion in the form of maxmin preferences. It has

a number of practical implications. If the agents’ risk aversion is estimated

using the data on prices and holdings of assets or on financial contracts

with the low volatility of payoffs, then the equilibrium risk premium of

medium-volatility assets will be higher than the predictions of the standard

expected utility model. At the same time, in high-volatility environments,

the agents are willing to take more risk than can be expected solely on the

basis of the risk aversion that they manifest in medium-volatility environ-

ments. The latter observation can potentially contribute to the discussion

of market participants’ willingness to take (and, conversely, insure against)

catastrophic risks. The steeper slope of the curve in Figure 3 in the low- to

medium-volatility range also implies that mistake aversion leads to sensitiv-

ity of the volatility of asset prices to the volatility of payoffs that is higher

than in other models.
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4 Axiomatic Foundations of the Model

4.1 Setup

This part of the paper examines the axiomatic foundations of the present

model of mistake aversion.

To start, a formal description of the framework is in order. Let Ω be a

nonempty set of the states of the world, which is assumed to be finite, and

X be the space of payoffs, which is assumed to be convex.10 The objects

that the agent is evaluating are acts — profiles of state-contingent payoffs,

represented by functions from Ω to X . The set of all acts is denoted by F .

The agent’s problem is to choose his preferred acts from a finite set S of acts

given a safe (or default) option d that is an element of S. His choices are

described by a choice correspondence c that maps a decision problem (S,d)
into a set c(S,d) that consists of all acts in S that are equally attractive

(among themselves) and strictly preferred to the rest of S.11 The collection

of all admissible decision problems is denoted by C.12

4.2 Axioms

As the next step, I describe the axioms that are consistent with the objective

of modeling mistake-averse choice and that, subsequently, will be proven to

characterize the proposed choice procedure.

The first axiom is the standard basic postulate of choice theory: The set

of chosen alternatives is always nonempty and is contained in the set of

offered alternatives.

10More precisely, X is a convex subset of a metrizable topological vector space.
11As is frequent in choice theory, it is assumed that he is not forced to break ties and

can choose more than one alternative if his choice set contains some options between

which he is truly indifferent.
12Formally, C ∶= {(S,d) ∣ S ⊂ F ,0 < ∣S∣ < ∞, d ∈ S}.
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Axiom A1 (Choice Correspondence). For all (S,d) ∈ C, c(S,d) ≠ ∅ and

c(S,d) ⊆ S.
Then, it is assumed that the space of outcomes X has the worst element.

Axiom A2 (Worst Element). There exists x∗ ∈X such that, for any x ∈X ,

x ∈ c({x,x∗}, x∗).
Note that this axiom (and a few subsequent ones) asserts a preference

between two alternatives by postulating that x ∈ c({x,x∗}, x∗), rather than
x ∈ c({x,x∗}, x) — that is, via choice from a set that contains the two

alternatives when the default option is taken to be the worse of them. This

way of stating the axiom makes it weaker (less demanding): Overall, making

an alternative the default can only increase its attractiveness, in the sense

that if some alternative g is not chosen from a set S when it is the default,

then it can never be chosen from S if some other alternative in S is selected

to be the default.

The next axiom adapts the classical Weak Axiom of Revealed Preference

to the current setting of choice with default options.

Axiom A3 (WARP). For all (S,d), (T, d) ∈ C and f, g ∈ F ,

f, g ∈ S ∩ T, f ∈ c(S,d), g ∈ c(T, d) ⇒ f ∈ c(T, d).
Generally, the Weak Axiom of Revealed Preference postulates the inde-

pendence of the choice from irrelevant alternatives — the alternatives that

are inferior to the ones that are chosen and, in the current setting, that are

also distinct from the default. In particular, the axiom implies that

(a) if (S,d) and (T, d) are decision problems such that T ⊂ S, f ∈ c(S,d),
and f ∈ T , then it must be that f ∈ c(T, d); and

(b) if (S,d) and (T, d) are decision problems such that T ⊂ S, {f, g} ⊆
c(T, d), and g ∈ c(S,d), then it must be that f ∈ c(S,d).
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In the standard theory, WARP is key to proving the transitivity of prefer-

ences inferred from choices in doubleton sets.

Next, it is assumed that choice follows the principle of monotonicity:

Suppose that some alternative f is chosen in some decision problem, and g

dominates f statewise (in the sense that the payoff g(ω), regardless of the
state, is preferred to the certain payoff f(ω) for all ω ∈ Ω). Then, g must

also be chosen from the same set if it becomes available.

Axiom A4 (Monotonicity). For all (S,d) ∈ C and f, g ∈ F ,

f ∈ c(S ∪ {f}, d)
g(ω) ∈ c({g(ω), f(ω), x∗}, x∗) ∀ω∈Ω

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒ g ∈ c(S ∪ {g}, d).

A similar monotonicity condition is standard in the theory of preferences

over uncertainty.

The next axiom is a version of the classical Independence condition, which

is key in the theory of expected utility preferences. Here, however, its ap-

plicability is restricted to acts that are not “ruled out” (i.e., are choosable)

in the presence of the default option.

Axiom A5 (Qualified Independence). For all f, g, h, d ∈ F such that f ∈

c({f, d}, d), g ∈ c({g, d}, d), and h ∈ c({h, d}, d), and all α ∈ (0,1], we have

f ∈ c({f, g, d}, d) ⇔ αf + (1 − α)h ∈ c({αf + (1 − α)h,
αg + (1 −α)h, d}, d).

Furthermore, it is assumed that the decision maker’s understanding of

mistakes is relative and invariant to changes in scale. This assumption may

be viewed as parallel to assuming constant relative risk aversion in the

standard theory of choice under risk. Formally, the assumption is stated as

follows.
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Axiom A6 (Scale Invariance). For all (S,d) ∈ C, f ∈ F , and α ∈ (0,1],
f ∈ c(S,d) ⇔ αf + (1 −α)x∗ ∈ c(αS + (1−α)x∗, αd+ (1−α)x∗).

In the literature on preferences over uncertainty, this postulate is similar

to the Worst Independence axiom of Chateauneuf and Faro (2009). Al-

though Scale Invariance can be viewed as an independence-like condition,

it has a much more limited scope than Qualified Independence, in that it

considers only mixtures with one particular element, x∗. Note, also, that

the axiom is not redundant: x∗ cannot play the role of h in the statement

of the Qualified Independence axiom because, generally, x∗ ∉ c({x∗, d}, d).
Now, I introduce two properties that are novel in my model.

The first of the two axioms can be described as follows: Suppose that an

option f is chosen over g when g is the default. Then, a mixture of f and

h′ should be better than a similar mixture of g and h if the options h′ and

h are such that h′ is an improvement over h (in the sense that h′ is chosen

over h when h is the default).

Axiom A7 (Comparative Improvement). For all f, g, h′, h ∈ F , and α ∈

[0,1],
f ∈ c({f, g}, g)
h′ ∈ c({h′, h}, h)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⇒ αf + (1 − α)h′ ∈ c({αf + (1 −α)h′,

αg + (1 − α)h},
αg + (1 − α)h).

Generally, this axiom (as well as the next one) describes situations in

which a particular choice with one default option may serve as a “justi-

fication” in other choice situations with different defaults and, therefore,

restricts the types of choices that can be viewed as “mistakes.”

From this viewpoint, the Comparative Improvement axiom considers the

situation in which some alternative is prefered to the default (which, per
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force, means that choosing it is not considered a mistake), and the agent

is asked to choose between the alternative and the default after they are

modified (by mixing them with other alternatives) in such a way that the

modification applied to the non-default alternative is preferred to the one

applied to the default. Then, the axiom asserts that choosing the non-default

alternative over the default in this new choice problem is perfectly justified.

The second axiom has a similar flavor.

Axiom A8 (Default Option Mirroring). For all f, d, h′, h ∈ F and α ∈ [0,1],
⎧⎪⎪⎪⎨⎪⎪⎪⎩
αf + (1 − α)h ∈ c({αf + (1 − α)h,αd + (1 −α)h′)}, αd + (1 − α)h′)
αf + (1 − α)h′ ∈ c({αf + (1 − α)h′, αd + (1 − α)h′)}, αd + (1 − α)h′)
implies

αf + (1 − α)h ∈ c({αf + (1 − α)h,αd + (1 − α)h}, αd + (1 − α)h).
One distinction between the Comparative Improvement and the Default

Option Mirroring axioms is that the latter axiom considers changes in acts

that are already mixed, whereas the former introduces a mixture only in

the consequent.

To illustrate the content of this axiom, suppose that the decision maker

prefers portfolio A to default portfolio D, and that A contains a fraction

1−α of the shares of Apple, Inc. Suppose that he also prefers portfolio B —

which is identical to A except that the shares of Apple, Inc., are replaced

with shares of BP, plc. — to portfolio D. The axiom postulates that the

decision maker, then, should also prefer A to a new default portfolio C that

is obtained from D by replacing the shares of BP with shares of Apple in an

amount that constitutes a 1−α fraction of the portfolio — a change that is

symmetric to the one that led from A to B. Note, also, that, in the standard

expected utility theory, observing the fact that the decision maker prefers

B over D would be sufficient to conclude that he should prefer A to C.
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Overall, the above two axioms embody the model’s objective to treat

default options as reference points for the decision maker’s analysis of which

choices are prudent and which may turn out to be mistakes. Moreover, these

axioms ensure that the default options do not have any additional effects

beyond that.

The penultimate axiom in this list imposes a technical condition of the

continuity of choices with respect to the changes in the choice problem.

Recall that the space of outcomes X is assumed to be endowed with

a metric that I denote by d. Then, the space of acts F is assumed to be

endowed with the sup-norm: ∥f−g∥ ∶=maxω∈Ω d(f(ω), g(ω)), and a sequence

(fn)∞n=1 converges to f ∈ F if limn→∞∥fn − f∥ = 0.
The continuity assumption is as follows.

Axiom A9 (Continuity). For all f, g, d ∈ F and sequences (fn)∞n=1, (gn)∞n=1,
(dn)∞n=1 in F such that fn → f , gn → g, and dn → d as n → ∞, if fn ∈

c({fn, gn, dn}, dn) and gn ∈ c({gn, dn}) for all n ∈ N, then f ∈ c({f, g, d}, d).
Finally, it is assumed that the agent is not totally indifferent among all

alternatives.

Axiom A10 (Nondegeneracy). There exists y ∈X such that c({y, x∗}, x∗) =
{y}.

4.3 Representation theorem

After introducing the axioms, I can now state the paper’s main result, which

establishes an equivalence between the behavioral traits captured by these

axioms and the choice procedure that was introduced earlier.

Theorem 1. A correspondence c ∶ C ⇉ F satisfies axioms (A1)–(A10) if and

only if there exists a nonconstant, continuous, and affine function u ∶ X → R
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such that minu(X) = 0, a prior p ∈∆(Ω), and a function k ∶ ∆(Ω) → [0,1]
such that, for all (S,d) ∈ C,

c(S,d) = Argmax
f∈S

∑
ω∈Ω

u(f(ω))p(ω)
s.t. ∑

ω∈Ω

u(f(ω)) q(ω) ≥ k(q) ∑
ω∈Ω

u(d(ω)) q(ω) for all q ∈∆(Ω).
(1)

This theorem shows that, in fact, axioms (A1)–(A10) together impose a

very strong structure on the decision maker’s choice procedure:

1. The deviations from the standard expected utility maximization take

the form of additional mental constraints.

2. These constraints can be assumed to be affine in the evaluated alter-

native f and the default option d and may be formulated in terms of

their expected utilities.

3. Moreover, in each constraint, the expected utilities of f and d are

computed using the same probability distribution.

4. The threshold for the expected utility of f is computed from the ex-

pected utility of d using a multiplicative factor.

Note that, in comparison to the functional form discussed in the introduc-

tion, the above theorem does not explicitly mention the setM of alternative

probabilistic scenarios. Nevertheless, this set is present in the theorem im-

plicitly as the support of k — the collection of probability distributions for

which k takes a positive value.

In the rest of the paper, I will use the following terminology.

Definition. A choice correspondence c ∶ C ⇉ F is said to be guaranteed

expected utility if it admits a representation via a tuple (u, p, k) as in The-

orem 1.
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4.4 Guaranteed Expected Utility Preferences and Ro-

bust Decision Making

As was discussed in the introduction, the functional form (1) of the choice

correspondence captures the agent’s mistake aversion by eliminating the al-

ternatives that may turn out to be mistakes. The potential mistakes here

are understood as alternatives that lead to losses relative to the obvious

safe choice under one of the scenarios (represented by a probability mea-

sure over Ω) that the decision maker views as possible. The name of the

choice correspondence, “guaranteed expected utility,” emphasizes that, in

this model, the decision maker’s concerns about making mistakes are solved

in a way that gives him a guaranteed level of expected utility regardless of

which of the possible probability distributions is true.

The crucial “parameter” of this model — the function k — serves a dual

role here. First, it reflects the decision maker’s tolerance to losses: If k

decreases, he becomes less concerned about the possible size of his losses if

his primary prior p turns out to be wrong. From this perspective, the level

of k represents the tradeoff: When k is low, it allows the decision maker

to get closer to the action that maximizes his utility under p; when k is

high, it provides him with a higher level of utility that is guaranteed for

all possible probability distributions. Second, k also embodies the decision

maker’s opinion about the relevance of various probability distributions: At

a fixed q, the lower k(q) is, the less frequently the corresponding constraint

binds, and the less relevant q is for the decision process. Given that the

utility function u takes only nonnegative values, the extreme case of k(q) = 0
means that the constraint for that q is never binding, and, thus, q is not

relevant.

The function k may take various shapes. In particular, as illustrated in the

next two examples, k can be chosen to express the decision maker’s concern
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that the true probability distribution governing the uncertainty may not be

exactly his primary prior, while he believes that it should still be in the

proximity.

Example 1. Let function k ∶∆(Ω) → [0,1] be defined as

k(q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
K, if ρ(q, p) ≤ ε,
0, otherwise,

whereK ∈ (0,1] and ε ≥ 0 are constants and ρ is a distance function between

two probability distributions, such as relative entropy (or Kullback-Leibler

distance), defined as

ρ(q, p) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
ω∈Ω∶

q(ω)>0

log
q(ω)
p(ω)q(ω), if q(ω) = 0 for all ω ∈ Ω such that p(ω) = 0,

+∞, otherwise.

In this specification of k, ε determines the size of the set of probability

distributions that the decision maker considers possible. All priors in this

set are equally relevant for robustness analysis, and the constant K captures

his overall tolerance to losses should his primary prior turn out to be wrong.

At the extreme, if ε = +∞, the decision maker views all priors as possi-

ble and takes a very conservative stand by requiring a choosable action to

perform relatively well under any of them. At the other extreme, if ε = 0,

the model collapses to the standard expected utility maximization (and, as

will be elaborated in the next section, the value of K in this case becomes

irrelevant).

Example 2. Let function k ∶∆(Ω) → [0,1] be defined as

k(q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − 1

ε
ρ(q, p), if ρ(q, p) ≤ ε,

0, otherwise,
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where ε > 0 is a constant and ρ is a distance function. This specification

has only one numeric parameter, ε, that determines the critical distance

between the priors that are still considered possible and the primary prior p.

The alternative probabilistic scenarios now become not equally important:

Their relevance takes the maximal value of one at p and fades to zero as

the distance between the prior and p increases.

Overall, the choice procedure (1) is in line with the procedures that can

be found in practice. A related idea of robust choice is expressed, for ex-

ample, in the famous (albeit controversial) book Fooled by Randomness by

Nassim Nicholas Taleb, which is one of very few books on investing featured

in Fortune’s list of “The Smartest Books We Know.” Writing about finan-

cial decisions based on probabilities that are not objective but estimated

from the data or inferred from previous experience, Taleb states: “I will

use statistics and inductive methods to make aggressive bets, but I will not

use them to manage my risk and exposure. Surprisingly, all the surviving

traders I know seem to have done the same. They trade on ideas based on

some observation . . .but . . . they make sure that the costs of being wrong

are limited[.]” The procedure studied in this paper is also consistent with

formal risk management in financial institutions, which maximize profits

of their investing activities subject to risk limits that are imposed either

internally or by the regulator. While not all risk limits take the form of a

threshold on possible expected losses, many of them, such as stress loss,

Credit Spread Basis Point Value, and Credit Spread Widening 10%, are

consistent with (1).13

13The stress loss metric shows the potential mark-to-market loss of a portfolio under

certain hypothetical abnormal market conditions, such as an oil crisis, a repetition of the

Asian’97 crisis, and others. Credit Spread Basis Point Value is the loss (or gain) under a

hypothetical deterioration of the credit markets in which all credit spreads (the cost of

insurance against default) increase by one basis point in absolute terms. Credit Spread
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4.5 Uniqueness of the Representation

While Theorem 1 establishes that, observing the agent’s choices, one can

find a utility function, a prior, and a tolerance function that represent his

choice procedure, it is also desirable to understand the extent to which these

objects can be identified uniquely. Answering this question is important not

only for interpreting the model, but also for doing the comparative statics,

calibrating the model in applications, and so on.

The uniqueness properties of the representation in Theorem 1 resemble

the properties of a number of models in the literature on ambiguity, such

as Chateauneuf and Faro’s (2009), Maccheroni et al. (2006), and Cerreia-

Vioglio, Maccheroni, Marinacci, and Montrucchio (2011): Although identi-

cal choice behavior can be generated by more than one tuple of the object

of the representation, in the set of the “equivalent” tuples, there is a salient

one.

As the next theorem shows, the salient representation in my model is the

one that has the maximal k: In this case, the additional mental constraints

become binding for all q ∈∆(Ω) such that k(q) > 0.
Theorem 2. Suppose that a choice correspondence c ∶ C ⇉ F satisfies ax-

ioms (A1)–(A10), and (u, p, k) is its representation as in 1. Then:

(i) If (u′, p′, k′) is another representation of c, then u′ = βu for some

β > 0, p′ = p, and (u, p,max(k, k′)) is also a representation of c.14

(ii) There exists a (unique) pointwise-maximal k∗ ∶ ∆(Ω) → [0,1] such
that (u, p, k∗) is a representation of c.

Since my model can accommodate the standard expected utility prefer-

Widening 10% is a similar loss or gain if all credit spreads increase in relative terms by

10% of their current values.
14The maximum operation is taken pointwise: max(k, k′)(q) =max(k(q), k′(q)) for all

q ∈ ∆(Ω).
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ences by letting k(q) = 0 for all q ∈ ∆(Ω), it may also be useful to re-state

the uniqueness claim for this special form of preferences.

Observation 3. Suppose that c ∶ C ⇉ F is a choice correspondence such

that there exists a nonconstant, continuous, and affine function u ∶X → R+

such that minu(X) = 0, and p ∈∆(Ω) such that

c(S,d) = Argmax
f∈S

∑
ω∈Ω

u(f(ω))p(ω).
Then, (u′, p′, k′) is a representation of c as in (1) if and only if u′ = βu for

some β > 0, p′ = p, and k′(q) = 0 for all q ∈∆(Ω)/{p}.
The central part of this statement is that, in the representation of ex-

pected utility preferences, the value of the tolerance function k(q) is unique
(and is equal to zero) for all q other than p.

This observation also highlights a property of the guaranteed expected

utility representation that holds for any choice correspondence in the model:

The value of the tolerance function at the prior p is irrelevant for the choice

behavior. Indeed, in any decision problem (S,d) ∈ C, if ∑ω∈Ω u(f(ω))p(ω) <
∑ω∈Ω u(d(ω))p(ω), then f is never chosen in (S,d) regardless of the value

of k(p); conversely, if f is chosen, then it must be that ∑ω∈Ω u(f(ω))p(ω) ≥
∑ω∈Ω u(d(ω))p(ω), and the constraint for q = p is satisfied for any value of

k(p) ∈ [0,1]. Furthermore, this observation also implies that the maximal

tolerance k∗ at p is always one.

4.6 Comparative Statics

To complete the model, it is necessary to develop a way to compare decision

makers’ attitudes towards mistakes and characterize them in terms of the

representation for the purpose of comparative statics.

The key concept in this analysis is the behavioral notion of one decision

maker being more mistake-averse than another.
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Definition 1. A choice correspondence c2 ∶ C ⇉ F is said to be more

mistake-averse than c1 ∶ C ⇉ F if, for all (S,d) ∈ C, {d} = c1(S,d) implies

{d} = c2(S,d).

In words, fix a decision problem and suppose that one decision maker

strictly prefers to keep the default option in that problem. Then, a deci-

sion maker who is more mistake-averse than the first should be even more

compelled to keep the default.

The next proposition provides a characterization of that property in terms

of the representation.

Proposition 4. Suppose that c1, c2 ∶ C ⇉ F are guaranteed expected utility

choice correspondences, and (u1, p1, k∗1) and (u2, p2, k∗2) are their represen-

tations with the maximal k∗
1
and k∗

2
. Then, c2 is more mistake-averse than

c1 if and only if u2 = βu1 for some β > 0 and k∗
2
(q) ≥ k∗

1
(q) for all q ∈∆(Ω).

This proposition establishes that one decision maker is more mistake-

averse than another if and only if he has less tolerance (and, hence, a higher

acceptance threshold) for losses under all alternative probabilistic scenarios.

Note that this comparative notion — one agent being more mistake-averse

than another — does not impose any direct restrictions on how their be-

liefs — p1 and p2 — must be related; indirectly, the characterization of the

proposition implies that k∗
2
(p1) = 1.

While Proposition 4 provides a characterization in terms of the maximal

tolerance functions, it may also be useful to state a partial result about the

effect of changing the tolerance function in an arbitrary (not necessarily

maximal) representation.

Proposition 5. Suppose that c1, c2 ∶ C ⇉ F are guaranteed expected utility

choice correspondences, and (u, p, k1) and (u, p, k2) are their representa-
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tions. Then, k2(q) ≥ k1(q) for all q ∈ ∆(Ω) implies that c2 is more mistake-

averse than c1.

Considering, again, the special case of the standard expected utility pref-

erences, we have the following trivial corollary.

Corollary 6. For any guaranteed expected utility choice correspondence c,

there is a standard expected utility choice correspondence c0 such that c is

more mistake averse than c0.

This means that, indeed, choice correspondences from the guaranteed

expected utility class can rightfully be called mistake-averse, and that the

standard preferences may be thought of as “mistake-neutral.”
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Appendix

A Representation Through Binary Relations

In this section, I develop an intermediate representation of choice correspon-

dences that satisfy axioms (A1)–(A10) via a pair of binary relations.

Before proceeding to the results, I formally introduce a number of prop-

erties of an arbitrary binary relation ⊵ on F .

Reflexivity For all f ∈ F , f ⊵ f .

Transitivity For all f, g, h ∈ F , f ⊵ g and g ⊵ h imply f ⊵ h.

Completeness For all f, g ∈ F , either f ⊵ g or g ⊵ f .

Monotonicity For all f, g ∈ F such that f(ω) ⊵ g(ω) for all ω ∈ Ω,
we have f ⊵ g.

Independence For all f, g, h ∈ F and α ∈ (0,1], f ⊵ g ⇔ αf + (1 −
α)h ⊵ αg + (1 − α)h.

Continuity For all f, g ∈ F and sequences (fn)∞n=1 and (gn)∞n=1 such

that fn ⊵ gn for all n ∈ N and fn → f , gn → g as n →∞, we have

f ⊵ g.

Nondegeneracy There exist f, g ∈ F such that f ⊳ g.

Worst Element There exists x∗ ∈X such that x ⊵ x∗ for all x ∈X .

Scale Invariance For all f, g ∈ F and α ∈ (0,1], f ⊵ g ⇔ αf + (1 −
α)x∗ ⊵ αg + (1 − α)x∗.

Comparative Improvement For all f, g, h′, h ∈ F and α ∈ [0,1],
f ⊵ g and h′ ⊵ h implies αf + (1 − α)h′ ⊵ αg + (1 − α)h.

Mirroring For all f, g, h′, h ∈ F and α ∈ [0,1],
⎧⎪⎪⎨⎪⎪⎩
αf + (1 −α)h ⊵ αg + (1 − α)h′
αf + (1 −α)h′ ⊵ αg + (1 − α)h′
implies

αf + (1 − α)h ⊵ αg + (1 − α)h).
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Next, I state and prove a number of lemmas that will be used to prove

the main result of this appendix.

Lemma 7. Suppose that c ∶ C ⇉ F satisfies Choice Correspondence, Worst

Element, and Monotonicity axioms. Then, for any f ∈ F , f ∈ c({f, x∗}, x∗).
Proof. Observe that f(ω) ∈ c({f(ω), x∗}, x∗) for all ω ∈ Ω by the Worst

Element axiom. Since x∗ ∈ c({x∗}, x∗) by the Choice Correspondence axiom,

we obtain f ∈ c({f, x∗}, x∗) by the Monotonicity axiom.

Lemma 8. Suppose that c ∶ C ⇉ F is a correspondence that satisfies ax-

ioms (A1)–(A10), and suppose that f, g, d ∈ F are such that f ∈ c({f, d}, d)
and g ∈ c({g, d}, d). Then,

f ∈ c({f, g, d}, d) ⇔ f ∈ c({f, g, x∗}, x∗). (2)

Proof. “⇒” part. Suppose that f ∈ c({f, g, d}, d). Fix an arbitrary t ∈ (0,1),
and let d′ ∶= td + (1 − t)x∗, f ′ ∶= tf + (1 − t)x∗, g′ ∶= tg + (1 − t)x∗. By the

Scale Invariance axiom, we have f ′ ∈ c({f ′, d′}, d′), g′ ∈ c({g′, d′}, d′), and
f ′ ∈ c({f ′, g′, d′}, d′).
Next, let f 0 ∶= 1

1+tf
′ +

t
1+td and g0 ∶= 1

1+tg
′ +

t
1+td. Observe that d ∈

c({d, d′}, d′) by the Comparative Improvement axiom: The conditions of

the axiom hold because d ∈ c({d}, d) by the Choice Correspondence axiom,

and d ∈ c({d,x∗}, x∗) by Lemma 7. Then, by the Qualified Independence

axiom, we have f 0 ∈ c({f 0, g0, d′}, d′).
Observe, also, that f 0 = t

1+tf +
1

1+td
′ and g0 = t

1+tg +
1

1+td
′. In addition, f ∈

c({f, d′}, d′) and g ∈ c({g, d′}, d′) by the Comparative Improvement axiom:

The conditions of the axiom hold because f ∈ c({f, d}, d) and g ∈ c({g, d}, d)
by assumption, and f ∈ c({f, x∗}, x∗) and g ∈ c({g, x∗}, x∗) by Lemma 7.

Therefore, by the Qualified Independence axiom, we have f ∈ c({f, g, d′}, d′).
Finally, since f ∈ c({f, g, d′}, d′) holds for all t ∈ (0,1), then, by the

Continuity axiom, the same must hold in the limit as t → 0, and we obtain

f ∈ c({f, g, x∗}, x∗).
“⇐” part. Suppose that f ∈ c({f, g, x∗}, x∗) and assume, by contradiction,

that f ∉ c({f, g, d}, d).
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Step 1. I claim that {g} = c({f, g, d}, d). Indeed, c({f, g, d}, d) is a nonempty

subset of {f, g, d} by the Choice Correspondence axiom, and d ∉ c({f, g, d}, d):
Otherwise, WARP and the fact that f ∈ c({f, d}, d) would imply that

f ∈ c({f, g, d}, d), which is assumed to be not the case.

Step 2. Let x∗ be an arbitrary element of X such that c({x∗, x∗}, x∗) =
{x∗}, and note that it exists by the Nondegeneracy axiom. For each t ∈ [0,1],
let f ′t , f

′′
t , g

′
t, d
′
t be defined as follows:

f ′ ∶= (1 − t)f + tx∗, f ′′ ∶= (1 − t)f + tx∗,
g′ ∶= (1 − t)g + tx∗, d′ ∶= (1 − t)d + tx∗.

Observe that f ′t ∈ c({f ′t , d′t}, d′t) and g′t ∈ c({g′t, d′t}, d′t) for all t ∈ (0,1) by
the Scale Invariance axiom, and d′t ∈ c({d′t}, d′t) for all t ∈ (0,1) by Choice

Correspondence.

Step 3. I also claim that f ′′t ∈ c({f ′′t , d′t}, d′t) for all t ∈ (0,1). Indeed, for
all ω ∈ Ω and all t ∈ (0,1), we have f ′′t (ω) ∈ c({f ′′t (ω), f ′t(ω), x∗}, x∗) by the

Qualified Invariance axiom: The pair (f ′′t (ω), f ′t(ω)) is a mixture with ft(ω)
of the pair (x∗, x∗) that satisfies x∗ ∈ c({x∗, x∗}, x∗). The claim of this step,

then, follows from f ′t ∈ c({f ′t , d′t}, d′t) by the Monotonicity axiom.

Step 4. By the Continuity axiom, the result of Step 1 implies that it is pos-

sible to choose a sufficiently small τ ∈ (0,1) such that {g′τ} = c({f ′′τ , g′τ , d′τ}, d′τ).
Then, as follows from the already proven part of this Lemma, we have

g′τ ∈ c({f ′′τ , g′τ , x∗}, x∗).
Step 5. Since f ∈ c({f, g, x∗}, x∗) by assumption, we also have f ′τ ∈ c({f ′τ , g′τ , x∗}, x∗)

by the Scale Invariance axiom.

Step 6. Let C = c({f ′τ , f ′′τ , g′τ , x∗}, x∗), and note that it is a nonempty

subset of {f ′τ , f ′′τ , g′τ , x∗} by the Choice Correspondence axiom. Now, I prove

that f ′τ ∈ C by using WARP repeatedly: If x∗ ∈ C, then f ′τ ∈ C because

f ′τ ∈ c({f ′τ , x∗}, x∗) by the Worst Element axiom. If f ′′τ ∈ C, then g′τ ∈ C

because g′τ ∈ c({f ′′τ , g′τ , x∗}, x∗) by Step 4. If g′τ ∈ C, then f ′τ ∈ C because

f ′τ ∈ c({f ′τ , g′τ , x∗}, x∗) by Step 5. Jointly, these observations imply that C

contains f ′τ in any case.

Step 7. Finally, by WARP, f ′τ ∈ C implies that f ′τ ∈ c({f ′τ , f ′′τ , x∗}, x∗).
By the Qualified Independence axiom, it implies that x∗ ∈ c({x∗, x∗}, x∗),
which contradicts the choice of x∗.
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Lemma 9. Suppose that c ∶ C ⇉ F is a correspondence that satisfies ax-

ioms (A1)–(A10). Then, the binary relation ≿∗ defined as

f ≿∗ g ⇔ f ∈ c({f, g, x∗}, x∗) (3)

satisfies Reflexivity, Transitivity, Completeness, Monotonicity, Independence,

Continuity, and Nondegeneracy.

Proof. The proof of Reflexivity, Transitivity, and Completeness follows the

standard argument, with the only amendment that our setting requires the

default option to be present in all choice sets. For all f ∈ F , f ∈ c({f, x∗}, x∗)
by the Worst Element axiom, which proves Reflexivity.

To prove Transitivity, suppose that f1, f2, f3 ∈ F are such that f1 ≿∗ f2 and

f2 ≿∗ f3, which means that f1 ∈ c({f1, f2, x∗}, x∗) and f2 ∈ c({f2, f3, x∗}, x∗).
Let S ∶= c({f1, f2, f3, x∗}, x∗). I claim that f1 ∈ S. Indeed, if x∗ ∈ S, then f1 ∈

S by WARP as f1 ∈ c({f1, x∗}, x∗) by the Worst Element axiom. Suppose

that x∗ ∉ S. Then, by the Choice Correspondence axiom, S is a nonempty

subset of {f1, f2, f3}. Let i ∈ {1,2,3} be the smallest number such that

fi ∈ S. If i ≠ 1, then fi−1 ∈ S by WARP because fi−1 ∈ c({fi−1, fi, x∗}, x∗), a
contradiction to the choice of i. This completes the proof of the claim that

f1 ∈ S. Now, by WARP again, f1 ∈ c({f1, f3, x∗}, x∗), which means that

f1 ≿∗ f3. The Transitivity is now proven.

To prove completeness, let f, g ∈ F be arbitrary, and let S ∶= c({f, g, x∗}, x∗).
I claim that either f ∈ S or g ∈ S (or both). Indeed, if neither of them is in

S, then, by the Choice Correspondence axiom, it must be that S = {x∗}; in
this case, it must be also that f ∈ S by WARP as f ∈ c({f, x∗}, x∗) by the

Worst Element axiom, a contradiction. If f ∈ S, then f ≿∗ g, and if g ∈ S,

then g ≿∗ f , and the Completeness is now proven.

The Monotonicity, Independence, Continuity, and Nondegeneracy prop-

erties of ≿∗ follow from the corresponding axioms immediately.

Now, we are ready to prove the main result of this appendix — a repre-

sentation of choice correspondences through a pair of binary relations.

Proposition 10. Suppose c ∶ C ⇉ F is a correspondence that satisfies ax-

ioms (A1)–(A10). Then, there exist two binary relations ≿∗ and ≿ on F
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such that

c(S,d) =Max≿∗{f ∣ f ∈ S, f ≿ d}, (4)

and such that

(i) ≿∗ satisfies Reflexivity, Transitivity, Completeness, Monotonicity, In-

dependence, Continuity, and Nondegeneracy;

(ii) ≿ satisfies Reflexivity, Worst Element, Scale Invariance, Comparative

Improvement, Mirroring, and Continuity;

(iii) ≿∗ and ≿ jointly have the following properties:

(a) For all f, g ∈ F , f ≿ g implies f ≿∗ g.

(b) For all d ∈ F and all f, g ∈ F such that g(ω) ≿∗ f(ω) for all ω ∈ Ω,

we have f ≿ d⇒ g ≿ d.

Proof. Let ≿∗ be defined by (3), and ≿ be defined as f ≿ g⇔ f ∈ c({f, g}, g).

Let (S,d) be an arbitrary choice problem in C, and f ∈ c(S,d). I claim

that, first, f ≿ d, and, second, f ≿∗ g for all g ∈ S such that g ≿ d. The first

part of the claim, f ≿ d, follows immediately from WARP. Let g ∈ S be an

arbitrary element such that g ≿ d. Since f ∈ c(S,d), then f ∈ c({f, g, d}, d)

by WARP. By Lemma 8, f ∈ c({f, g, x∗}, x∗), which means that f≿∗g.

Conversely, suppose that (S,d) ∈ C, f ∈ S, f ≿ d, and f ≿∗ g for all g ∈ S′,

where S′ ∶= {h ∈ S ∶ h ≿ d}. By Lemma 8, f ∈ c({f, g, d}, d) for all g ∈ S′. We

also have f ∈ c({f, g, d}, d) for all g ∈ S/S′ by WARP since g ∉ c({g, d}, d).

Using WARP again, we conclude that f ∈ c(S,d).

It remains to prove that ≿∗ and ≿ have the properties that were claimed

in the statement of the proposition. The properties of ≿∗ are established by

Lemma 9. Similarly to ≿′, the reflexivity of ≿ follows from the Worst Ele-

ment axiom. Worst Element, Scale Invariance, Comparative Improvement,

and Continuity properties of ≿ follow immediately from the corresponding

axioms, and the Mirroring property follows from the Default Option Mirror-

ing axiom. Finally, Claim (iii)(a) follows from Lemma 8, and Claim (iii)(b)

follows immediately from the Monotonicity axiom.
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B Proofs of the Results

Recall that the state space Ω is currently assumed to be finite, and this

assumption is used in Lemma 15. The extension of the results to the infi-

nite state space and infinite-dimensional space of acts is work in progress;

however, for most of this appendix, the notation is already adapted to that

extension.

B.1 Binary relations over utility acts

As is standard in the literature on decisions over uncertainty, it is useful to

switch from working with binary relations over acts in F to binary relations

on so-called utility acts. The possibility of doing that in the current setting

is the subject of this subsection.

Notation. For any nondegenerate interval I ⊆ R, let B(I) ∶= IΩ. Also, let

ba(Ω) denote the set of all additive functions from 2Ω to R.

I define the following properties of an arbitrary binary relation ≿ on B(I),

where I ⊆ R is a nondegenerate interval containing 0.

Reflexivity For all f ∈ B(I), f ≿ f .

Comparative Monotonicity For all d ∈ B(I) and all f, g ∈ B(I)

such that g ≥ f pointwise, we have f ≿ d⇒ g ≿ d.

Scale Invariance For all f, g ∈ B(I) and all α ∈ (0,1], f ≿ g⇔ αf ≿

αg.

Comparative Improvement For all f, g, h′, h ∈ B(I) and α ∈ [0,1],
f ≿ g and h′ ≿ h implies αf + (1 − α)h′ ≿ αg + (1 − α)h.

Mirroring For all f, g, h′, h ∈ B(I) and α ∈ [0,1],
⎧⎪⎪⎨⎪⎪⎩
αf + (1 −α)h ≿ αg + (1 − α)h′
αf + (1 −α)h′ ≿ αg + (1 − α)h′
implies

αf + (1 − α)h ≿ αg + (1 − α)h).
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Continuity For all f, g ∈ B(I) and sequences (fn)∞n=1 and (gn)∞n=1
such that fn ≿ gn for all n ∈ N and fn → f , gn → g in the

sup-norm as n →∞, we have f ≿ g.

Lemma 11. Suppose that ≿ is a binary relation on F that satisfies Reflexiv-

ity, Worst Element, Scale Invariance, Comparative Improvement, Mirror-

ing, and Continuity, as defined in Appendix A. Suppose, also, that there

exists a nonconstant, continuous, and affine function u ∶ X → R such that

(i) For all x, y ∈ X, x ≿ y⇔ u(x) ≥ u(y);
(ii) u(x∗) = 0;
(iii) For all d̃ ∈ F and all f̃ , g̃ ∈ F such that u ○ g̃ ≥ u ○ f̃ pointwise, we have

f̃ ≿ d̃⇒ g̃ ≿ d̃.

Then, there exists a binary relation ≿○ on B(I), where I ∶= u(X), that satis-
fies Reflexivity, Comparative Monotonicity, Scale Invariance, Comparative

Improvement, Mirroring, and Continuity, as defined above, and such that,

for all f̃ , g̃ ∈ F ,

f̃ ≿ g̃ ⇔ (u ○ f̃) ≿○ (u ○ g̃).
Proof. Step 1. Let ≿○ be defined as f ≿○ g if and only if there exist f̃ , g̃ ∈ F

such that u ○ f̃ = f , u ○ g̃ = g, and f̃ ≿ g̃.

Step 2. Suppose that f̃ , f̃ ′, g̃ ∈ F are such that u ○ f̃ = u ○ f̃ ′ and f̃ ≿ g̃. I

claim that f̃ ′ ≿ g̃. Indeed, if u ○ f̃ = u ○ f̃ ′, then f̃ ′(ω) ∼ f̃(ω) for all ω ∈ Ω.
Therefore, by Comparative Monotonicity, f̃ ′ ≿ g̃.

Step 3. Suppose that f̃ , g̃, g̃′ ∈ F are such that u ○ g̃ = u ○ g̃′ and f̃ ≿ g̃. I

claim that f̃ ≿ g̃′.

Fix an arbitrary n ∈ N such that n ≥ 2. I prove, first, that

(1 − 1

n
) f̃ + 1

n
g̃ ≿

n − k

n
g̃ +

k

n
g̃′ (5)

for all k = 0, . . . , n. Indeed, for k = 0, this claim follows from Compara-

tive Improvement since g ≿ g by Reflexivity. Next, suppose, by induction,

that (5) holds for some k = 0, . . . , n − 1. By Step 2, (5) also implies

(1 − 1

n
) f̃ + 1

n
g̃′ ≿

n − k

n
g̃ +

k

n
g̃′. (6)
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By Mirroring, (5) and (6) together imply that

(1 − 1

n
) f̃ + 1

n
g̃′ ≿

n − k − 1

n
g̃ +

k + 1

n
g̃′.

By Step 2, g̃′ can be replaced with g̃ in the left-hand side of the above

expression, and the induction step is complete. Hence, (5) is proven for all

k = 0, . . . , n.

Then, substituting k = n into (5), we obtain

(1 − 1

n
) f̃ + 1

n
g̃′ ≿ g̃′.

Taking n→∞ and using Continuity, this gives f̃ ≿ g̃′.

Step 4. Combining the results of Steps 2 and 3, we conclude that if f ≿○ g

for some f, g ∈ B(I) and f̃ , g̃ ∈ F are such that u ○ f̃ = f and u ○ g̃ = g, then

it must be that f̃ ≿ g̃.

Step 5. Now, I prove the Mirroring property. Suppose that f, g, h′, h ∈

B(I) and α ∈ [0,1] are such that αf + (1 − α)h ≿○ αg + (1 − α)h′ and
αf + (1 − α)h′ ≿○ αg + (1 − α)h′. Choose arbitrary f̃ , g̃, h̃′, h̃ ∈ F such that

u ○ f̃ = f , u ○ g̃ = g, u ○ h̃′ = h′, and u ○ h̃ = h. Since u is affine, we have

u ○ [αf̃ + (1 − α)h̃] = αf + (1 − α)h, u ○ [αg̃ + (1 − α)h̃′] = αg + (1 − α)h′,
u ○ [αf̃ + (1 − α)h̃′] = αf + (1 − α)h′. Since αf + (1 − α)h ≿○ αg + (1 − α)h′
and αf + (1 − α)h′ ≿○ αg + (1 − α)h′, then, by the result of Step 4, we

have αf̃ + (1 − α)h̃ ≿ αg̃ + (1 − α)h̃′ and αf̃ + (1 − α)h̃′ ≿ αg̃ + (1 − α)h̃′.
Therefore, by Mirroring, we have αf̃ + (1−α)h̃ ≿ αg̃ + (1−α)h̃, which gives

αf + (1 − α)h ≿○ αg + (1 − α)h by the definition of ≿○ and the affinity of u.

Step 6. Now, I prove the Continuity property. Suppose that f, g ∈ B(I)
and sequences (fn)∞n=1 and (gn)∞n=1 in B(I) are such that fn ≿○ gn for all

n ∈ N, and fn → f and gn → g as n→∞.

Step 6a. Let

a ∶= min{min
ω∈Ω

f(ω),min
ω∈Ω

g(ω)},
ā ∶= max{max

ω∈Ω
f(ω),max

ω∈Ω
g(ω)}.

If a = 0, then let x = x∗. Otherwise, let x ∈ X be such that u(x) < a. If ā ≥ a
for all a ∈ u(X), then let x̄ ∈ X be such that u(x̄) = ā. Otherwise, let x̄ ∈ X
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be such that u(x̄) > ā. Note that u(x) < u(x̄) because u is nonconstant.

Now, let γ ∶ u(X) → X be defined as follows. For a < u(x) or a > u(x̄), let
γ(a) be chosen arbitrary subject to u(γ(a)) = a. For a ∈ [u(x), u(x̄)], let
γ(a) be a mixture of x and x̄ such that u(γ(a)) = a; that is,

γ(a) ∶= u(x̄) − a
u(x̄) − u(x)x +

a − u(x)
u(x̄) − u(x) x̄.

Step 6b. Observe that, for any a, a′ ∈ [u(x), u(x̄)], we have γ(a)− γ(a′) =
a−a′

u(x̄)−u(x)(x̄−x). By the construction of x and x̄, we have f(ω) ∈ [u(x), u(x̄)]
and g(ω) ∈ [u(x), u(x̄)] for all ω ∈ Ω and, simultaneously, there exists N ∈ N

such that, for all n > N and all ω ∈ Ω, we have fn(ω) ∈ [u(x), u(x̄)] and
gn(ω) ∈ [u(x), u(x̄)]. Therefore, γ ○ fn → γ ○ f and γ ○ gn → γ ○ g in the

sup-norm as n→∞.

Step 6c. Since u ○ γ ○ fn = fn and u ○ γ ○ gn = g by the construction of γ,

and fn ≿○ gn holds by assumption for all n ∈ N, we have γ ○fn ≿ γ ○ gn for all

n ∈ N by the result of Step 4. Since ≿ is continuous, we have γ ○ f ≿ γ ○ g.

This implies that f ≿○ g, and the claim of Step 6 is proven.

Step 7. The remaining properties of ≿○ follow from the corresponding

properties of ≿ easily.

Lemma 12. Suppose that I ⊂ R is a nondegenerate interval such that

min I = 0, and suppose that ≿○ is a binary relation on B(I) that satisfies
Reflexivity, Comparative Monotonicity, Scale Invariance, Comparative Im-

provement, Mirroring, and Continuity. Then, there exists a binary relation

≿● on B(R+) that has the same properties and that extends ≿○ in the follow-

ing sense: For all f, g ∈ B(I), f ≿○ g⇔ f ≿● g.

Proof. Step 1. Let ≿● be defined as follows: For all f, g ∈ B(R+), f ≿● g if

and only if there exist β ∈ R++ such that βf ≿○ βg.

Step 2. I claim that if f, g ∈ B(R+) are such that f ≿● g, then γf ≿○ γg

holds for all γ ∈ R++ such that γf ∈ B(I) and γg ∈ B(I). Indeed, since
f ≿● g, then there exists β > 0 such that βf ≿○ βg. If γ = β, the claim

holds immediately. If γ < β, then βf ≿○ βg implies γ
β
βf ≿○ γ

β
βg by Scale

Invariance. If γ > β, then βf ≿○ βg means that β

γ
γf ≿○ β

γ
γg, which implies

that γf ≿○ γg, again by Scale Invariance.
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Step 3. Now, I prove Continuity. Suppose that f, g ∈ B(R+) and sequences

(fn)∞n=1 and (gn)∞n=1 in B(R+) are such that fn ≿● gn for all n ∈ N, and fn → f

and gn → g as n →∞. Let ā ∶= max{maxω∈Ω f(ω),maxω∈Ω g(ω)}, let ε ∈ int I
be arbitrary, and choose β > 0 such that βā + ε ∈ I. Then, observe that

βf ∈ B(I), βg ∈ B(I), and there exists N ∈ N such that, for all n > N , we

have βfn ∈ B(I) and βgn ∈ B(I). Since fn ≿● gn for all n ∈ N, by the result of

Step 2, we have that βfn ≿○ βgn for all n > N . By the Continuity property

of ≿○, we obtain βf ≿○ βg, which implies that f ≿ g.

Step 4. Given the result of Step 2, the remaining properties of ≿● follow

easily from the corresponding properties of ≿○.

B.2 Proof of Theorem 1

The key technical steps of the proof are presented as separate lemmas.

Lemma 13. Suppose that ≿ is a binary relation on B(R+) that satisfies

Reflexivity, Comparative Monotonicity, Scale Invariance, Comparative Im-

provement, Mirroring, and Continuity. Let P be defined as

P ∶= {(p, q) ∈ ba(Ω) × ba(Ω) ∶ ∀f,g∈B(R+)∶f≿g ∫ f dp −∫ g dq ≥ 0} .
Then,

f ≿ g ⇔ ∀(p,q)∈P ∫ f dp − ∫ g dq ≥ 0

for all f, g ∈ B(R+).
Proof. Let K ∶= {(f, g) ∈ B(R+)2 ∶ f ≿ g}. Observe that K is a cone by Scale

Invariance, convex by Comparative Improvement, and closed by Continu-

ity. Therefore, K is an intersection of all closed half-spaces that contain it

(Rockafellar, 1997, Corollary 11.7.1). The claim now follows from the fact

that ba(Ω) is isomorphic to the dual of B(R).
Lemma 14. Suppose that ≿ is a binary relation on B(R+) that satisfies

Reflexivity, Comparative Monotonicity, Scale Invariance, Comparative Im-

provement, Mirroring, and Continuity. Let K ′ be defined as

K ′ ∶= {(p, q, κ) ∈∆(Ω) ×∆(Ω) × [0,1] ∶ ∀f,g∈B(R+)∶f≿g ∫ f dp ≥ κ∫ g dq} .
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Then,

f ≿ g ⇔ ∀(p,q,κ)∈K ′ ∫ f dp ≥ κ∫ g dq (7)

for all f, g ∈ B(R+).
Proof. “⇒” part. Fix arbitrary f, g ∈ B(R+) such that f ≿ g, and let P be

defined as in Lemma 13. For any (p, q, κ) ∈ K ′, we have (p,κq) ∈ P by the

definitions of K ′ and P . The claim now follows from Lemma 13.

“⇐” part. Suppose that f, g ∈ B(R+) are such that f /≿ g. My objective is

to construct (p, q, κ) ∈K ′ such that ∫ f dp < κ ∫ g dq.
Step 1. Since f /≿ g, then, by Lemma 13, there exist (p1, q1) ∈ P such that

∫ f dp1 < ∫ g dq1. Observe that p1(S) ≥ 0 for all S ∈ 2Ω by the definition of

P because (1S,0) ∈K by Reflexivity and Comparative Monotonicity.

Step 2. Let S ∶= {ω ∈ Ω ∶ q1(ω) < 0}, and let q2 ∈ ba(Ω) be defined as

q2(ω) ∶= q1(ω) if ω ∉ S and q2(ω) ∶= 0 if ω ∈ S. Note that ∫ g dq1 ≤ ∫ g dq2,
and, therefore, ∫ f dp < ∫ g dq2.
Now, I claim that (p1, q2) ∈ P . To verify that, fix arbitrary (f ′, g′) ∈ K.

Let g′′ ∈ B(R+) be defined as g′′(ω) ∶= g′(ω) if ω ∉ S, and g′′(ω) ∶= 0 if ω ∈ S.

Then, (f ′, g′′) ∈ K: Indeed, 1

2
f ′ ≿ 1

2
g′ ≡ 1

2
g′′ + 1

2
(g′ − g′′) by the choice of

(f ′, g′) and Scale Invariance, 1

2
f ′+ 1

2
(g′−g′′) ≿ 1

2
g′′+ 1

2
(g′−g′′) by Comparative

Monotonicity, and, therefore, 1

2
f ′ ≿ 1

2
g′′ by Mirroring; in turn, f ′ ≿ g′′ by

Scale Invariance. Now, since (p1, q1) ∈ P , we have ∫ f ′ dp1 ≥ ∫ g′′ dq1. Notice
that ∫ g′′ dq1 = ∫Ω/S g′ dq1 = ∫Ω g′ dq2, which implies that ∫ f ′ dp1 ≥ ∫ g′ dq2.
The claim that (p1, q2) ∈ P is now proven.

Step 3. Observe that q2 is not identically zero: Otherwise, ∫ f dp < ∫ g dq2
could not hold. Also, p1 is not identically zero: For any S ∈ 2Ω, p1(S) ≥ q2(S)
because (p1, q2) ∈ P and (1S,1S) ∈ K by Reflexivity. Therefore, we can

define p ∶= 1

p1(Ω)
p1, q ∶=

1

q2(Ω)
q2, κ ∶=

q2(Ω)
p1(Ω)

, and note that κ ∈ (0,1]. Now,
first, (p1, q2) ∈ P implies that (p, q, κ) ∈ K ′ by the definitions of P and K ′.

Second, ∫ f dp1 < ∫ g dq1 implies that ∫ f dp < κ ∫ g dq, and the claim is

proven.

Lemma 15. Suppose that ≿ is a binary relation on B(R+) that satisfies

Reflexivity, Comparative Monotonicity, Scale Invariance, Comparative Im-
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provement, Mirroring, and Continuity, and suppose that f ∈ B(R+) and

g ∈ B(R++) are such that f /≿ g. Then, there exists h ∈ B(R++) such that

(i) h(ω) > f(ω) for all ω ∈ Ω, and

(ii) the supporting hyperplane to {f ′ ∈ B(R+) ∶ f ′ ≿ g} at h is unique.

Proof. Step 1. Let C ∶= {f ′ ∈ B(R+) ∶ f ′ ≿ g}, and note that it is closed and

convex by Continuity and Comparative Improvement.

Let h1 ∈ B(R+) be defined as h1(ω) = max{f(ω), g(ω)} + 1 for all ω ∈ Ω.

Note that h1 ≿ g by Comparative Monotonicity. For all α ∈ [0,1], let vα ∶=
αh1+(1−α)f . Let α∗ ∶= sup{α ∈ [0,1] ∶ vα ∈ T}; since v0 ∉ T and T is closed,

we have α∗ > 0.

Step 2. Let h2 ∶= v1/2α∗ and note that h2(ω) − f(ω) ≥ 1

2
α∗ for all ω ∈ Ω

and h2 ∉ C (see Figure 4). Next, let C2 ∶= C ∩ {f ′ ∈ B(R+) ∶ ∀ω∈Ω f ′(ω) ≥
f(ω)}, and note that C2 is convex and closed and h2 ∉ C2. I also claim

that C2 is full-dimensional — i.e., its affine hull is the entire space B(R).
Indeed, fix an arbitrary ϕ ∈ B(R), and let ψ ∈ B(R+) be defined as ψ(ω) ∶=
max{h1(ω), ϕ(ω)}. By Comparative Monotonicity, we have ψ ∈ C2 and 2ψ−

ϕ ∈ C2, and, therefore, ϕ = 2ψ + (−1)(2ψ − ϕ) ∈ aff (C2).
Step 3. Now, by Rockafellar (1997, Theorem 18.8), there exists h ∈ ∂C2

such that

(i) the supporting hyperplane to C2 at h is unique, and

(ii) that supporting hyperplane separates h2 and C2.

Step 4. I claim that that h(ω) > f(ω) for all ω ∈ Ω and, therefore, h ∈ ∂C.

Indeed, suppose, by contradiction, that h(ω0) = f(ω0) for some ω0 ∈ Ω.

Then, for all f ′ ∈ C2, we have f ′(ω0) ≥ h(ω0), and, therefore, the hyperplane
{f ′ ∈ B(R+) ∶ f ′(ω0) = h(ω0)} is the unique supporting hyperplane to C2 at

h. However, h2(ω) > h(ω), which contradicts the fact that this hyperplane

separates h2 and C2.

Step 5. Finally, I prove that the supporting hyperplane to C2 at h is also a

supporting hyperplane to C. Let r ∈ ba(Ω)/{0} be such that the supporting

half-space to C2 at h is {f ′ ∈ B(R+) ∶ ∫ f ′ dr ≥ ∫ hdr}, and suppose, by

contradiction, that there exists some f ′ ∈ C such ∫ f ′ dr < ∫ hdr. Then, let
ε > 0 be chosen sufficiently small so that f ′′ ∶= (1−ε)h+εf ′ satisfies f ′′(ω) >
f(ω) for all ω ∈ Ω. By Reflexivity and Comparative Improvement, we have
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Figure 4.— Illustration of the proof of Lemma 15

f ′′ ∈ C; since it also satisfies the additional constraints imposed in C2, we

have f ′′ ∈ C2. At the same time, ∫ f ′′ dr = (1 − ε) ∫ hdr + ε ∫ f ′ dr < ∫ hdr,
which contradicts the definition of the supporting half-space to C2.

Lemma 16. Suppose that ≿ is a binary relation on B(R+) that satisfies

Reflexivity, Comparative Monotonicity, Scale Invariance, Comparative Im-

provement, Mirroring, and Continuity. Let K ′′ be defined as

K ′′ ∶= {(p,κ) ∈∆(Ω) × [0,1] ∶ ∀f,g∈B(R+)∶f≿g ∫ f dp ≥ κ∫ g dp} .
Then,

f ≿ g ⇔ ∀(p,κ)∈K ′′ ∫ f dp ≥ κ∫ g dp (8)

for all f, g ∈ B(R+).
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Proof. “⇒” part. Fix arbitrary f, g ∈ B(R+) such that f ≿ g, and let K ′ be

defined as in Lemma 14. For any (p,κ) ∈ K ′′, we have (p, p, κ) ∈ K ′. The
claim now follows from Lemma 14.

“⇐” part. Suppose that f, g ∈ B(R+) are such that f /≿ g. My objective is

to prove that there exist (p,κ) ∈K ′′ such that ∫ f dp < κ ∫ g dp.
Step 1. I start proving the claim under an additional assumption that

g(ω) > 0 for all ω ∈ Ω, and I will consider the general case in Step 6.

Step 2. Let C ∶= {f ′ ∈ B(R+) ∶ f ′ ≿ g}, and let h ∈ ∂C be as delivered by

Lemma 15. I claim that there exists (p, q, κ) ∈K ′ such that ∫ hdp = κ ∫ g dq.
Indeed, let the function D ∶ K ′ → R be defined as D(p, q, κ) ∶= ∫ hdp −
κ ∫ g dq, and note that D(p, q, κ) ≥ 0 for all (p, q, κ) ∈ K ′ by Lemma 14.

Note that K ′ ⊆ ∆(Ω) × ∆(Ω) × [0,1] and is closed as an intersection of

closed sets; therefore, it is compact. Since D is continuous, it achieves its

minimum on K ′. Let β ∶= minD(K ′), and suppose that β > 0. Then, for

all h′ ∈ B(R+) such that ∥h′ − h∥ < β, we have ∫ h′ dp − κ ∫ g dq ≥ 0 for all

(p, q, κ) ∈ K ′, and, therefore, by Lemma 14, h′ ≿ g, which contradicts the

fact that h ∈ ∂C. We conclude that β = 0. Now, pick any (p, q, κ) ∈K ′ such
that D(p, q, κ) = 0, and observe that it satisfies the claimed equality.

Step 3. Let Lp ∶ B(R+) → R be a linear functional defined as Lp(v) ∶=
∫ v dp. Observe that the hyperplane Lp(⋅) = Lp(h) is a supporting hyper-

plane to C at h: Indeed, (p, q, κ) ∈K ′ implies that, for any f ′ ∈ C, we have

∫ f ′ dp ≥ κ ∫ g dq; therefore, since κ ∫ g dq = ∫ hdp by the choice of h, we

obtain Lp(f ′) ≥ Lp(h).
Step 4. Now, I claim that the hyperplane Lq(⋅) = Lq(h), where Lq(v) ∶=
∫ v dq for all v ∈ B(R+), is also a supporting hyperplane to C at h.

To prove that, suppose, by contradiction, that there exists f1 ∈ C such

that Lq(f1) < Lq(h).
Let M ∶= ∥f1 − h∥, m ∶= minω∈Ω g(ω), and note that m > 0 by the as-

sumption made in Step 1. Let α be chosen arbitrarily in (0, m
M
), and let

f2 be defined as f2 ∶= αf1 + (1 − α)h. Since f1 ≿ g and h ≿ g, we have

f2 ≿ g by Comparative Improvement. Next, let v ∈ B(R+) be defined as

v(ω) ∶= min{h(ω), f2(ω)} for all ω ∈ Ω, and w ∶= g − (f2 − v). Note that, for

all ω ∈ Ω, (f2 −v)(ω) ≤ αM and, by the choice of α, w(ω) ≥ 0. Now, observe
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that

h =
1

2
v +

1

2
(v + 2(h − v)), f2 =

1

2
v +

1

2
(v + 2(f2 − v)),

g =
1

2
w +

1

2
(w + 2(f2 − v)).

Therefore, by Mirroring, we have h ≿ 1

2
w + 1

2
(w + 2(h − v)), which, after

rearrangement, implies h ≿ g − f2 + h.

Since (p, q, κ) ∈K ′, we have ∫ hdp ≥ κ ∫ (g−f2+h)dq. Given that ∫ hdp =
κ ∫ g dq, we obtain 0 ≥ ∫ (h − f2)dq, and, in turn, 0 ≥ ∫ (h − f1)dq, which
contradicts the choice of f1.

Step 5. Since the supporting hyperplane to C at h is unique, we conclude

that p = q, and that (p, p, κ) ∈ K ′. Since h(ω) > f(ω) for all ω ∈ Ω by the

construction of h, we have ∫ f dp < ∫ hdp = κ ∫ g dp. This completes the

proof of the claim if g(ω) > 0 for all ω ∈ Ω.

Step 6. Finally, I prove the implication f /≿ g⇒ ∃(p,κ)∈K ′′ ∫ f dp < κ ∫ g dp
in the general case. Fix arbitrary f, g ∈ B(R+) such that f /≿ g. By Conti-

nuity, there exists ε > 0 sufficiently small such that f + ε1Ω /≿ g + ε1Ω. By

the result of previous steps, there exist (p,κ) ∈K ′′ such that ∫ (f +1Ω)dp <
κ ∫ (g + 1Ω)dp; since κ ≤ 1, this implies that ∫ f dp < κ ∫ g dp.

Proof of Theorem 1. Only if part. Suppose that c ∶ C ⇉ F is a corre-

spondence that satisfies axioms (A1)–(A10).

Step 1. By Proposition 10, there exist two binary relations ≿∗ and ≿ on

F such that c(S,d) =Max≿∗{f ∣ f ∈ S, f ≿ d}, and such that

(i) ≿∗ satisfies Reflexivity, Transitivity, Completeness, Monotonicity, In-

dependence, Continuity, and Nondegeneracy;

(ii) ≿ satisfies Reflexivity, Worst Element, Scale Invariance, Comparative

Improvement, Mirroring, and Continuity;

(iii) ≿∗ and ≿ jointly have the following properties:

(a) For all f, g ∈ F , f ≿ g implies f ≿∗ g.

(b) For all d ∈ F and all f, g ∈ F such that g(ω) ≿∗ f(ω) for all ω ∈ Ω,

we have f ≿ d⇒ g ≿ d.
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By the Anscombe-Aumann expected utility theorem, there exist a non-

constant and affine function u ∶ X → R and a prior p ∈ ∆(Ω) such that,

for all f, g ∈ F , f ≿∗ g ⇔ ∫ (u ○ f)dp ≥ ∫ (u ○ g)dp. Moreover, u must be

continuous because ≿∗ is continuous and u has a convex range. Since u is

defined up to a positive affine transformation, it can be assumed without

loss of generality that minu(X) = u(x∗) = 0.

Step 2. Now, u and ≿ satisfy the conditions of Lemma 11. Let ≿○ be a

binary relation on B(u(X)) such that f ≿ d ⇔ (u ○ f) ≿○ (u ○ d) for all

f, d ∈ F , as defined by that lemma. By Lemma 12, the relation ≿○ can be

extended to a relation ≿● on B(R+).

Step 3. By Lemma 16, there exists a nonempty set K ′′ ⊆ ∆(Ω) × [0,1]
such that

f ≿ d ⇔ (u○f) ≿● (u○d) ⇔ ∀(q,κ)∈K ′′ ∫ (u○f)dq ≥ κ∫ (u○d)dq
for all f, d ∈ F .

Step 4. Let k(q) ∶= sup{κ ∈ [0,1] ∶ (q, κ) ∈K ′′} for all q ∈∆(Ω). Since K ′′
is an intersection of closed sets and, therefore, closed, we have (q, k(q)) ∈K ′′
for all q ∈ ∆(Ω). Moreover, for all q ∈ ∆(Ω) and κ ∈ [0, k(q)], we have

(q, κ) ∈K ′′. Therefore, representation (1) holds.

Only if part. Suppose that c is a correspondence defined by representa-

tion (1), where u, p, and k satisfy the conditions stated in the theorem. My

objective is to prove that c satisfies all the listed axioms.

Choice Correspondence: It is immediate that c(S,d) ⊆ S for all (S,d) ∈ C.
It is also nonempty because d always satisfies all the constraints.

WARP: Suppose that (S,d), (T, d) ∈ C, and f, g ∈ F are such that f, g ∈

S ∩ T , f ∈ c(S,d), and g ∈ c(T, d). Since f and g are chosen given the

default d, they must satisfy all the constraints. We also have that ∫ (u ○
f)dp ≥ ∫ (u ○ g)dp and ∫ (u ○ g)dp ≥ ∫ (u ○ h)dp for all h ∈ T such that

∫ (u ○ h)dq ≥ k(q) ∫ (u ○ d)dq for all q ∈ ∆(Ω). Then, it is immediate that

f ∈ c(T, d).
Monotonicity: Suppose that (S,d) ∈ C and f, g ∈ F are such that f ∈

c(S ∪ {f}, d) and g(ω) ∈ c({g(ω), f(ω), x∗}, x∗) for all ω ∈ Ω. The latter

implies that u(g(ω)) ≥ u(f(ω)) for all ω ∈ Ω, and, therefore, ∫ (u ○ g)dp ≥
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∫ (u ○ f)dp, which, in turn, implies that ∫ (u ○ g)dp ≥ ∫ (u ○ h)dp for all

h ∈ T such that ∫ (u ○h)dq ≥ k(q) ∫ (u ○ d)dq for all q ∈∆(Ω). Since we also
have ∫ (u ○ g)dq ≥ ∫ (u ○ f)dq ≥ k(q) ∫ (u ○ d)dq for all q ∈ ∆(Ω), it follows
that g ∈ c(S ∪ {g}, d).
Qualified Independence: Suppose that f, g, h, d ∈ F are such that f ∈

c({f, d}, d), g ∈ c({g, d}, d), and h ∈ c({h, d}, d), and suppose that α ∈ (0,1].
Then, f and g must satisfy all the maximization constraints in the repre-

sentation, as well as the mixtures αf +(1−α)h and αg+(1−α)h. The claim
of the axiom, then, follows from the linearity of the integral.

Scale Invariance: This axiom follows immediately since u(x∗) = 0, u is

affine, and the constraints and the objective function of the optimization

are linear.

Comparative Improvement: Suppose that f, g, h′, h ∈ F are such that f ∈

c({f, g}, g) and h′ ∈ c({h′, h}, h), and fix an arbitrary α ∈ [0,1]. Then, it
must be that

∫ (u ○ f)dp ≥ ∫ (u ○ g)dp, ∫ (u ○ f)dq ≥ k(q)∫ (u ○ g)dq,
∫ (u ○ h′)dp ≥ ∫ (u ○ h)dp, ∫ (u ○ h′)dq ≥ k(q)∫ (u ○ h)dq

for all q ∈∆(Ω).
Then, taking the convex combination of the first and the second rows with

the weights of α and 1−α, respectively, we obtain the claimed: αf+(1−α)h′ ∈
c({αf + (1 −α)h′, αg + (1 − α)h}, αg + (1 − α)h).
Default Option Mirroring Suppose that f, d, h′, h ∈ F and α ∈ [0,1] are

such that

αf + (1 − α)h ∈ c({αf + (1 − α)h,αd + (1 −α)h′)}, αd + (1 −α)h′),
αf + (1 −α)h′ ∈ c({αf + (1 − α)h′, αd + (1 − α)h′)}, αd + (1 − α)h′).

Then, we have

α∫ (u ○ f)dq + (1 −α)∫ (u ○ h)dq ≥
k(q)α∫ (u ○ d)dq + k(q)(1 − α)∫ (u ○ h′)dq,

α∫ (u ○ f)dq + (1 −α)∫ (u ○ h′)dq ≥
k(q)α∫ (u ○ d)dq + k(q)(1 − α)∫ (u ○ h′)dq
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for all q ∈∆(Ω). Taking a convex combination of these two inequalities with

the weights of 1 − k(q) and k(q), respectively, leads to
α∫ (u ○ f)dq + (1 − k(q))(1 −α)∫ (u ○ h)dq ≥

k(q)α∫ (u ○ d)dq
for all q ∈ ∆(Ω). Since this inequality holds also, in particular, for q = p

with k(p) = 1, we obtain after rearrangement αf + (1 − α)h ∈ c({αf + (1 −
α)h,αd + (1 − α)h}, αd + (1 − α)h).
Continuity: Suppose that f, g, d ∈ F and sequences (fn)∞n=1, (gn)∞n=1, (dn)∞n=1

in F are such that fn → f , gn → g, dn → d as n→∞, and fn ∈ c({fn, gn, dn}, dn)
and gn ∈ c({gn, dn}) for all n ∈ N. then f ∈ c({f, g, d}, d). This means that,

for all n ∈ N, we have ∫ (u○fn)dp ≥ ∫ (u○gn)dp, ∫ (u○fn)dp ≥ ∫ (u○dn)dp,
and ∫ (u○fn)dq ≥ ∫ (u○dn)dq for all q ∈∆(Ω). Then, by the continuity of u

and the integral, we get ∫ (u ○ f)dp ≥ ∫ (u ○ g)dp, ∫ (u ○ f)dp ≥ ∫ (u ○ d)dp,
and ∫ (u ○ f)dq ≥ ∫ (u ○ d)dq for all q ∈∆(Ω), which proves the axiom.

Worst Element and Nondegeneracy axioms follow immediately from the

properties of u.

B.3 Proofs of the remaining results

Lemma 17. Suppose that a choice correspondence c ∶ C ⇉ F satisfies ax-

ioms (A1)–(A10), and (u, p, k) is its representation. Suppose, also, that

q0 ∈ ∆(Ω) and κ ∈ [0,1] are such that

f ∈ c({f, d}, d) ⇒ ∫ (u ○ f)dq0 ≥ κ∫ (u ○ d)dq0
for all f ∈ F , and let k′ ∶ ∆(Ω) → [0,1] be defined as k′(q) = k(q) for all

q ≠ q0, and k′(q0) = max{k(q0), κ}. Then, (u, p, k′) is also a representation

of c.

Proof. Fix an arbitrary decision problem (S,d) ∈ C, and suppose, first, that

f ∈ c(S,d). My objective is to prove that

f ∈Argmax
h∈S

∫ (u ○ h)dp
s.t. ∫ (u ○ h)dq ≥ k′(q)∫ (u ○ d)dq for all q ∈∆(Ω).
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Indeed, observe that ∫ (u ○ f)dq ≥ k(q) ∫ (u ○ d)dq for all q ∈∆(Ω) because
(u, p, k) is a representation of c. Moreover, by WARP, f ∈ c(S,d) implies

f ∈ c({f, d}, d), and, therefore, ∫ (u ○ f)dq0 ≥ κ ∫ (u ○ d)dq0. Together, this
implies that ∫ (u ○ f)dq ≥ k′(q) ∫ (u ○ d)dq for all q ∈ ∆(Ω). Finally, since
(u, p, k) is a representation of c, we have ∫ (u ○ f)dp ≥ ∫ (u ○ g)dp for all

g ∈ Fd,k, where Fd,ζ is defined for each ζ ∈ [0,1]∆(Ω) as
Fd,ζ ∶= {g ∈ F ∶ ∫ (u ○ g)dq ≥ ζ(q)∫ (u ○ d)dq for all q ∈ ∆(Ω)} .

Then, per force, ∫ (u ○ f)dp ≥ ∫ (u ○ g)dp for all g ∈ Fd,k′.

Conversely, suppose that f ∈ S is such that

f ∈Argmax
h∈S

∫ (u ○ h)dp
s.t. ∫ (u ○ h)dq ≥ k′(q)∫ (u ○ d)dq for all q ∈∆(Ω),

and, by contradiction, suppose that f ∉ c(S,d). Let h ∈ c(S,d) be arbitrary.
Now, observe that ∫ (u○f)dp ≥ ∫ (u○g)dp for all g ∈ Fd,k, and, therefore, it

must be that ∫ (u○h)dp > ∫ (u○f)dp and h ∈ Fd,k. Since h ∈ c(S,d), we have,
by WARP, h ∈ c({h, d}, d). Therefore, ∫ (u ○ h)dq0 ≥ κ ∫ (u ○ d)dq0, which
implies that h ∈ Fd,k′. Together with the earlier inequality, this contradicts

the choice of f as a constrained maximizer.

Proof of Theorem 2. Observe, first, that ∫ (u ○ f)dp ≥ ∫ (u ○ g)dp⇔ f ∈

c({f, g, x∗}, x∗) ⇔ ∫ (u′ ○ f)dp′ ≥ ∫ (u′ ○ g)dp′ for all f, g ∈ F . Therefore,

by the uniqueness of the expected utility representation, we have p′ = p and

u′ = βu + α for some β > 0 and α ∈ R. Given the normalization u(x∗) =
0 = u′(x∗), we conclude that α = 0. The fact that (u, p,max(k, k′)) is a

representation of c follows from Lemma 17.

Next, let R denote the set of all tuples (u′, p′, k′) that represent c, and

let k∗ ∶ ∆(Ω) → [0,1] be defined as k∗(q) = sup(u′,p′,k′)∈R k
′(q) for all q ∈

∆(Ω). As follows from the result of the previous paragraph, for any f, d ∈ F

such that f ∈ c({f, d}, d), we have ∫ (u ○ f)dq ≥ k′(q) ∫ (u ○ d)dq for all

q ∈ ∆(Ω) and for all (u′, p′, k′) ∈ R. Therefore, for any f, d ∈ F such that

f ∈ c({f, d}, d), we have ∫ (u ○ f)dq ≥ k∗(q) ∫ (u ○ d)dq for all q ∈ ∆(Ω).
Then, by Lemma 17, (u, p, k∗) is a representation of c.
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Proof of Observation 3. The “if” part of the claim is trivial. To prove

the “only if” part, suppose that a choice correspondence c admits a repre-

sentation

c(S,d) = Argmax
f∈S

∫ u(f(ω))dp(ω) (9)

for some nonconstant, continuous, and affine u ∶X → R such that minu(X) =
0, and p ∈ δ(Ω), and (u′, p′, k′) is another guaranteed expected utility repre-

sentation of c. As follows from Theorem 2, we have u′ = βu for some β > 0,

and p′ = p.

Suppose, by contradiction, that k′(q) > 0 for some q ∈ ∆(Ω)/{p}. Let
E ⊂ Ω be such that q(E) ≠ p(E), and assume without loss of generality

that q(E) < p(E). Next, let x∗, x∗ ∈ X be chosen such that u(x∗) = 0 and

u(x∗) > 0, which is possible because minu(X) = 0 and u is nonconstant,

and let x̃ ∈ X be chosen such that u(x̃) = p(E)u(x∗), which is possible

because u is affine. Now, consider act f ∈ F defined as f(ω) = x∗ if ω ∈ E

and f(ω) = x∗ if ω ∉ E. As follows from (9), we have f ∈ c({f, x̃}, x̃). At the
same time, ∫ (u′ ○ f)dq − k′(q)u′(x̃) = q(E)βu(x∗) − k′(q)p(E)βu(x∗) < 0,
which contradicts the fact that (u′, p′, k′) is a representation of c and f ∈

c({f, x̃}, x̃).
Proof of Proposition 4. If part. Suppose that u2 = βu1 for some β > 0

and k∗
2
(q) ≥ k∗

1
(q) for all q ∈ ∆(Ω), and fix an arbitrary choice problem

(S,d) ∈ C such that {d} = c1(S,d). Now, suppose, by contradiction, that

there exists f ∈ S, f ≠ d, such that f ∈ c2(S,d). Since {d} = c1(S,d), we
have two possibilities: ∫ (u1 ○ f)dq < k∗1(q) ∫ (u1 ○ d)dq for some q ∈ ∆(Ω)
or ∫ (u1 ○ d)dp > ∫ (u1 ○ f)dp. In the first case, that inequality implies

∫ (u1 ○ f)dq < k∗2(q) ∫ (u1 ○ d)dq; in the second case, note that k∗
1
(p) = 1,

and, hence, k∗
2
(p) = 1 and ∫ (u1 ○f)dp < k∗2(p) ∫ (u1 ○d)dp. Both these cases

lead to a contradiction with f ∈ c2(S,d).
Only if part. Suppose that c2 is more mistake averse than c1. First,

observe that, for any x, y ∈ X , u2(x) ≥ u2(y) ⇒ x ∈ c2({x, y}, y) ⇒ x ∈

c1({x, y}, y)⇒ u1(x) ≥ u1(y). Then, it must be that u2 = βu1 + α for some

β > 0 and α ∈ R,and, given the normalization minu1(X) = minu2(X) = 0,
it follows that α = 0.
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Next, fix an arbitrary q ∈ ∆(Ω). For any (f, d) ∈ F2 such that f ∈

c2({f, d}, d), we have f ∈ c1({f, d}, d), and, therefore, ∫ (u1○f)dq ≥ k∗1(q) ∫ (u1○
f)dq. By Lemma 17, this implies that k∗

2
(q) ≥ k∗

1
(q).

Proof of Proposition 5. Suppose that k2(q) ≥ k1(q) for all q ∈ ∆(Ω),
and fix an arbitrary choice problem (S,d) ∈ C such that {d} = c1(S,d).
Now, suppose, by contradiction, that {d} ≠ c2(S,d), and, therefore, there
exists f ∈ S such that f ≠ d and f ∈ c2(S,d). Given the representation

of c2, we have ∫ (u ○ f)dq ≥ k2(q) ∫ (u ○ d)dq for all q ∈ ∆(Ω), and ∫ (u ○
f)dp ≥ ∫ (u ○ d)dp. In turn, given the representation of c1, we obtain that

f ∈ c1(S,d), a contradiction.
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