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Abstract

Many empirical studies of financial volatility within the GARCH framework tend
to exclude terms in the mean equation that are often proved to be statistically
significant. We analyze analytically how omission of various mean terms affects
the value of the ARCH parameter in the simple ARCH(1) model. We focus on
the following terms missing from the mean equation when they are in fact present:
a constant, a seasonal dummy, an autoregressive term, and a time-varying risk
premium. We track how the relative distortion in the value of the ARCH parameter
depends on amount of misspecification, and calibrate it to actual daily and monthly
returns. It turns out that the effect on the variance equation of missing elements
in the mean equation tends to be quite benign.
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1 Introduction

It is well known that any misspecification in the mean equation passes over to the variance
equation and distorts its estimation and all practically important output such as volatility
and value-at-risk predictions. There is widespread evidence that the mean equation
for financial returns may contain various deterministic trends (constant terms, seasonal
dummies) and/or stochastic components (lagged returns, time-varying risk premia). For
example, Berument & Kiymaz (2001) show that the day of the week effect is present
in the return equation; Li et al (2005) find statistically significant ARCH-in-mean effect
(Engle et al, 1987) with a carefully specified volatility equation.

Applied researchers usually specify the mean equation rather arbitrarily and often
neglect what may in fact be present. Typically, they include a constant, sometimes they
invoke seasonal dummies if the data exhibit some periodicity. Rarely do they include
an autoregressive component which, if included, serves as a guard against possible serial
correlation. And hardly ever do they include risk premium terms, except when studying
evolution of risk premia is of explicit interest.

There is a bulk of literature that studies impact of misspecification on the ARCH com-
ponent, see Lumsdaine & Ng (1999), van Dijk & Frances (1999) and Blake & Kapetanios
(2007), among others. However, this literature concentrates on the impact on properties
of tests for ARCH effects, while the question how misspecification distorts the ARCH
equation seems to remain unanswered. In this paper, we shed some light on how important
it is to keep the mean equation correctly specified.

We derive the formulas for relative distortions of the ARCH parameter in the simple
ARCH(1) model resulting from omission of components from the mean equation. We
focus on effects of omission of the following four terms, one by one, when they are in
fact present: a constant, a seasonal dummy, an autoregressive term, and a time-varying
risk premium. We analyze these formulas using 3-D graphs in order to track how the
relative distortion in the value of the ARCH parameter depends on the value of the ARCH
parameter and on amount of misspecification.

We intentionally focus on a ‘toy’ volatility model from the GARCH class, as it allows to
obtain analytical results for the quantity of interest. Another advantage of the ARCH(1)
structure is that it has a minimal number of parameters of interest that are inputs to any
forecasts, the ARCH coefficient being most important. If we get clearcut conclusions (as
we do) for the simplest ARCH model, they may be thought of being applicable to more
complex situations under GARCH modeling.

When calibrated to typical daily and monthly returns, the relative distortions tend to
be pretty small, often negligible. The relative distortion that is likely to occur in practice
is of order of meager few percent, much smaller than typically the standard error for the
ARCH parameter is. One can then conclude that in typical scenarios the effect on the
variance equation of missing elements in the mean equation must be quite benign and
may be ignored.
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2 Model

Consider the ARCH(1) model (Engle, 1982) superimposed on an arbitrary mean equation:

rt = µt + εt, (1)

εt = σtzt, zt|Ft−1 ∼ i.i.d.N (0, 1) ,

and

σ2
t = ω + αε2t−1, (2)

where Ft−1 is natural filtration, α > 0, ω > 0. We impose the condition α < 1/
√

3 for
fourth moments of εt to exist. Denote the unconditional variance of εt by σ2.

Suppose now that a researcher omits the term µt from the conditional mean and
estimates the same ARCH(1) model without the mean part. The missing µt is absorbed
into the process for σ2

t distorting the true values of ω and α. Our purpose is to analyze
the distortions to α under various scenarios for µt.

For analytical tractability, we consider estimation of the weak ARCH representation,
see Drost & Nijman (1993) and Francq & Zaköıan (2000):

ε2t = ω + αε2t−1 + vt, (3)

where P (vt|Ft−1) = 0. Then the distorted (pseudotrue) values of ω and α, say ω′ and α′,
are determined from the representation

r2t = ω′ + α′r2t−1 + v′t,

where P (v′t|Ft−1) = 0. That is, the pair (ω′, α′) is determined from a population least
squares projection of squared return on its lag. In particular,

α′ =
Er2t r

2
t−1 − (Er2t )

2

Er4t − (Er2t )
2 . (4)

The reason for utilizing the weak representation of the strong ARCH process (in the
terminology of Drost & Nijman (1993)) is availability of the closed-form expression (4).
A more popular estimation method in this context is quasi-maximum likelihood (QML)
whose pseudotrue parameter values differ from (ω′, α′). Both estimation methods are
based on the moment condition E[(r2t − ω− αr2t−1)ζt−1] = 0, where ζt−1 is an instrument
different in the degree of optimality: it is ζt−1 = (1, r2t−1) in case of the weak representation
and ζt−1 = (ω + αr2t−1)

−2(1, r2t−1) in the case of QML. Thus, these methods are expected
to yield pseudotrue values that are close.1

1We evaluated, via simulations, the difference between the pseudotrue values for processes from section
3. When the parameters belong to typical sets described in section 4, we obtained differences of no more
than 10%. When we blew up the degree of misspecification s hundredfold, these differences went up, but
their proportion to the gap between the true and pseudotrue values never exceeded 40%.
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3 Misspecification scenarios

We consider separately four types of mean specification omitted from the mean equation:

‘lost constant’: µt = µ,

‘lost seasonality’: µt = 1
2
(−1)tµ,

‘lost autoregression’: µt = ρrt−1,

‘lost risk premium’: µt = δσ2
t .

These four cases imitate the usual practice when applied researchers omit such terms from
the mean equation despite numerous evidence that they may be statistically significant
in the real data.

Let us introduce a scale parameter s ≥ 0 that summarizes influence of misspecification
and thus can be thought of as the degree thereof. It is different under different scenarios:
s = (µ/σ)2 under (qualitatively equivalent) ‘lost constant’ and ‘lost seasonality,’ s = ρ2

under ‘lost autoregression,’ and s = (δσ)2 under ‘lost risk premium.’ For each of the four
types of misspecification we derive the function α′ = α′ (α, s), and analyze the relative
difference2

∂α (α, s) :=
α′ (α, s)− α

α
.

This measure does not depend on data generation parameters other than α and s. The
computations and final formulas are given in an online Appendix at is.gd/missmean.

4 Results

We present the function ∂α using 3-D surface graphs produced by Wolfram Mathematica R©.
In all graphs below we restrict α to lie within the interval [α, ᾱ) , where α and ᾱ are lower
and upper bounds for α. We set α = 0.1 which is lower than is observed in returns
data of high enough frequency. The upper bound ᾱ is such that all moments needed for
existence of α′ exist; it varies with a type of misspecification. We restrict the ‘amount of
misspecification’ parameter s as well: s ∈ [0, s̄] .

The choice of s̄ is driven by the following considerations. We have calibrated a mean-
GARCH model with our four specifications of the mean to daily and monthly returns
from a few stock indexes and exchange rates. More precisely, we have run rolling window
(of 2000 observations for daily data and 500 observations for monthly data with a step of
100 and 10 observations, respectively) regressions on a few last decades of log returns, and
read off maximal values of s.3 For the ‘lost constant’ and ‘lost seasonality’ scenarios they
lie within the range [0.002,0.030] and reach maximal values for monthly stock returns; for
the ‘lost autoregression’ scenario they lie within the range [0.001,0.100] and reach maximal
values for monthly exchange rate returns; for the ‘lost risk premium’ scenario they lie

2 As long as α is far enough from zero, as is the case with financial returns of high enough frequency,
there are no problems with computing such ratio. The logarithmic measure log(α′/α) would yield similar
numerical results but the formulas would be less neat.

3In the ‘lost seasonality’ scenario, we used day-of-week dummies and tracked (half of) maximal
discrepancy among dummy estimates, which is a worst-case analog of the mean estimate in the ‘lost
constant’ scenario.
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within the range [0.005,0.040] and reach maximal values for monthly stock returns. These
intervals include values implied by typical evidence from empirical finance literature (e.g.,
see examples in Tsay (2002), chapter 3).

Under the ‘lost constant’ and ‘lost seasonality’ scenarios, ᾱ = 1/
√

3 ≈ 0.577 and
s̄ = 0.03. In both cases the function ∂α (α, s) is the same and is presented in Figure 1.

Figure 1: Distortions under ‘lost constant’ and ‘lost seasonality’ scenarios

The relative distortion is negative and decreases with the strength of heteroskedas-
ticity. For typical values of s and likely values of α it amounts to about 1–2%. Even in
extreme cases with lower values of α and high s the relative distortion will not exceed
5–6%.

Under the ‘lost autoregression’ scenario, ᾱ = 1/
√

3 ≈ 0.577 and s̄ = 0.10. The function
∂α (α, s) is presented in Figure 2.

Figure 2: Distortions under ‘lost autoregression’ scenario
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The relative distortion may be positive or negative (which is unrelated to the sign of
serial correlation). It sharply rises when heteroskedasticity gets weaker and can attain
dozens of percent. However, for typical values of s and likely values of α it fluctuates
around 1%, and may even decrease when s is much larger (like that for monthly exchange
rate returns) if heteroskedasticity is strong enough.

Under the ‘lost risk premium’ scenario, ᾱ = 1/ 4
√

105 ≈ 0.312 and s̄ = 0.04. The
function ∂α (α, s) is presented in Figure 3.

Figure 3: Distortions under ‘lost risk premium’ scenario

The relative distortion may be positive or negative (which is unrelated to the sign
of the risk premium term). It is pretty flat over the region except near the edge of ᾱ
where the surface sharply changes its shape. However, for typical values of s the relative
distortion never exceeds 2–3% by absolute value.

Note that the ARCH parameter is typically estimated with such precision that its
standard error has values up to 20% of value of the parameter (e.g., Frances & van
Dijk (2000), chapter 4; Tsay (2002), chapter 3). This is much larger than the relative
distortions obtain above, even for worst case scenarios.

5 Concluding remarks

Based on our findings, we can conclude that the effect on the variance equation of missing
elements in the mean equation must be quite benign, and applied researchers need not
worry about the issue.

We have intentionally exploited a very simple ARCH model in order to obtain ana-
lytical clear-cut conclusions. Setups with more realistic GARCH processes and possible
omissions of combinations of various mean components may be explored in a Monte-Carlo
framework.
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