
Off-diagonal elements of projection matrices

and dimension asymptotics

Stanislav Anatolyev∗

CERGE-EI and NES

Maksim Smirnov

CERGE-EI

Abstract
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1 Introduction

Consider n×n projection matrix P = Z (Z ′Z)−1 Z ′ of rank ` associated with the n×` instru-

ment (or regressor, or covariate) matrix Z containing n independent copies zi, i = 1, ..., n of

`-vector z. The elements of matrix P enter various formulas that are used to derive asymp-

totics of estimators and tests in the many instrument, many regressor and many covariate

literatures (e.g., van Hasselt 2010, Chao, Swanson, Hausman, Newey, and Woutersen 2012,

and Cattaneo, Jansson, and Newey 2018, to mention only a few). The qualifier “many”

refers to the dimension asymptotics, where ` increases to infinity proportionately to n, with

the ‘aspect ratio’ α = lim`,n→∞ `/n ∈ (0, 1) . In particular, most important is the asymptotic

behavior of the diagonal elements pii of P , particularly, the question of whether the limit of

each equals α or these limits exhibit variability across i. This issue is analyzed at length in

Anatolyev and Yaskov (2017), where, in particular, various examples – idealistic and realistic

– of both phenomena are given.

The off-diagonal elements pij, i 6= j, however, also play a role – they figure into definitions

of some estimators and test statistics, they participate in various derivations and proofs,

sometimes they are involved in assumptions about P . Hence, their asymptotic behavior may

also be of interest – for example, in the context of correlated observations with randomly

assigned instruments, or in the case of leave-out estimators that lack the terms associated

with the diagonal of P . While the asymptotic properties of pii’s were studied in Anatolyev

and Yaskov (2017), the asymptotics of pij’s have not been considered yet, and the present

note fills this gap.

When the instruments are deterministic, one can observe various patterns for elements

of P, off-diagonal ones in particular, depending on the instrument design. For example, the

group instrument setup (Bekker and van der Ploeg 2005) implies pij = I{i,j∈g for some group g}/|g|,
so the majority of pij’s are exact zeros, while the minority are strictly positive and may be

asymptotically fixed or converge to 0 depending on the design of groups. We instead are

interested in obtaining a more systematic pattern of the asymptotics of pij, i 6= j, under a

random instrument design. The linear regression literature provides very loose bounds for

pij in general, such as 1
n
− 1

2
≤ pij ≤ 1

2
with an intercept included and −1

2
≤ pij ≤ 1

2
without

an intercept (e.g., Mohammadi 2016), which are not helpful.

Intuition may suggest that, because the total ‘mass’ of P exactly (with a constant in-

cluded) or approximately (without a constant) equals n, and the trace of P equals `, by the

symmetry arguments, the ‘mass’ of each off-diagonal element is (n− `) / (n2 − n) = O (1/n) ,

and hence each pij must perhaps converge to zero with rate n. The asymptotic results we

obtain below show that the randomness in pij in fact dominates these biases and drives

the convergence rate down to
√
n, and the asymptotic distribution is normal with a simple

variance formula, at least for favorable instrument designs.
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2 Leave-two-out connection

A starting point is a two-permutation extension of the celebrated Sherman-Morrison formula,

which may also be of interest on its own. Let a, b ∈ Rp, and S ∈ Rp×p be symmetric and

invertible. Then

(S + aa′ + bb′)
−1

= S−1 + S−1a
′S−1b (ab′ + ba′)− (1 + b′S−1b) aa′ − (1 + a′S−1a) bb′

(1 + a′S−1a) (1 + b′S−1b)− (a′S−1b)2 S−1,

which can be verified directly. Taking a bilinear form for the pair (a, b) with respect to both

sides yields after simplifications

a′ (S + aa′ + bb′)
−1
b =

a′S−1b

(1 + a′S−1a) (1 + b′S−1b)− (a′S−1b)2 . (1)

Denote a leave-two-out version of Z ′Z by (Z ′Z)(ij) =
∑

k/∈{i,j} zkz
′
k. Let

p
(ij)
k1k2
≡ z′k1(Z

′Z)
−1
(ij) zk2

be a corresponding leave-two-out counterpart of pk1k2 . Applying formula (1) with a = zi,

b = zj and S = (Z ′Z)(ij) for i 6= j, one obtains

pij =
p

(ij)
ij(

1 + p
(ij)
ii

)(
1 + p

(ij)
jj

)
−
(
p

(ij)
ij

)2 . (2)

This relation is helpful in establishing asymptotic properties of pij, as all the elements on

the right side are bilinear or quadratic forms in vectors zi and/or zj that are statistically

independent of the associated matrix (Z ′Z)−1
(ij) .

3 Asymptotics

We derive an elegant asymptotic result, when the composition of instrument is ideal for

application of basic results of the random matrix theory. Then, we discuss how robust the

obtained results are to deviations of instrument design from the ideal structure. Note that

P is invariant to non-singular linear transformations of z, hence one can impose isotropy,

i.e. set var (z) = I`, without loss of generality

Fix a pair of indices 1 ≤ i, j ≤ n, i 6= j.

Theorem. Let the ` elements of z be IID with zero mean, unit variance and finite fourth

moments. Suppose zi are IID across i = 1, 2, ..., n. Then, as n→∞, `→∞ and `/n→ α ∈
(0, 1) , we have √

n pij
d→ N

(
0, α (1− α)

)
. (3)
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While it is assumed that E [z] = 0, adding unity to be an element of z does not alter

(3): in that case, pij gains an additional OP (1/n) term.1 This also means that the elements

of z may not be centered at zero, without changing the conclusion.

4 Robustness

The invariance of P to linear transformations of z implies that the Theorem can handle

non-independent settings with a “transformed independence design,” as named in the high-

dimensional statistics literature (see Athey, Imbens, and Wager 2018), and even time series,

such as strong autoregressive, settings (e.g., Bai and Zhou 2008). A natural question, how-

ever, arises, of how robust this result is to deviations from the transformed independence

design and distributional homogeneity.

The statement (3) is based on three ingredients: asymptotic normality for a linear com-

bination of elements of zi, validity of the Marchenko-Pastur law for a large covariance matrix

n−1Z ′Z associated with Z, and asymptotic constancy of the denominator of (2). We will

now discuss them one by one.

Asymptotic normality for a linear combination of elements of zi is natural to hold as long

as there is sufficient amount of mixing across them, while the asymptotic variance implied

by this combination stays valid because the elements are uncorrelated by design. Arguably,

this is the most robust ingredient in obtaining (3).

Even though the Marchenko-Pastur law is most often formulated for the IID case, distri-

butional homogeneity across instruments is not necessary as long as an additional Lindeberg-

type condition holds (Bai and Silverstein 2010, Theorem 3.10). Some relaxations in the litera-

ture away from independence describe pretty realistic configurations of instrument/covariate

sets. In particular, Bryson, Vershynin, and Zhao (2022) consider two interesting setups. In

one, all instruments are partitioned into blocks, with tight dependence within blocks but in-

dependence across blocks, which is a metaphor for inclusion of a number of basic instruments

along with their nonlinear functions (e.g., sieves). In the other, the instrument set is filled

with a number of basic instruments and various interactions among them. Subject to a rate

restriction on the degree of induced dependence, in both setups the Marchenko-Pastur law is

valid, with, perhaps surprisingly, the same aspect ratio α as under coordinate independence.

1Suppose that the matrix of included instruments Z is appended by ι, an n-vector of ones. By the

partitioned matrix inverse formula, pij gains an additional term

1

n

(
1− e′iPι

)(
1− e′jPι

)
1− (ι′Pι) /n

(where e′i and e′i are ith and jth unit n-vectors), which isOP (1/n) as long as the constant is not asymptotically

perfectly explained by the instruments already included in Z.
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The third ingredient behind (3) is asymptotic homogeneity of the diagonal elements

of P. Anatolyev and Yaskov (2017) present analysis of this property and give examples of

instrument setups when it does (see examples in Section 4) or does not (see examples in

Section 5) take place. When the diagonal of P is asymptotically heterogeneous, the diagonal

elements have random limits, which complicates the asymptotic distribution on the right

side of (3) in a complex manner according to the transformation (2).

An intermediate result of the Theorem is that pij = OP (1/
√
n) . This conclusion is far

more robust than the ultimate result, and does not require the aforementioned ingredients

to hold. This asymptotic order is driven by separation, asymptotically, of the eigenvalues of

n−1Z ′Z from zero, which holds under much weaker conditions than those in the Theorem –

in particular, for all the random design examples in Anatolyev and Yaskov (2017). Yaskov

(2014) gives quite weak conditions for such separation, which allow distributional hetero-

geneity, thick tails, and a wide scope of dependence within zi. The result pij � 1/
√
n under

random instrument design deems invalid the assumption of row-wise absolute summability

of elements of P made in the earlier many instruments literature (e.g., van Hasselt 2010,

Assumption 3(c)), even though this assumption does hold in the group instrument setup

mentioned in the Introduction.

Appendix: proof of Theorem

Let α = (1−
√
α)

2
and ᾱ = (1 +

√
α)

2
. Denote by λk, 1 ≤ k ≤ `, the ` positive eigenvalues

of the symmetric positive definite matrix (Z ′Z)(ij) / (n− 2) . By the Marchenko-Pastur law

(Bai and Silverstein 2010, Theorem 3.6),

1

`

∑̀
k=1

δλk
d→MP ,

whose density is (2πxα)−1
√

(ᾱ− x)(x− α) I{x∈[α,ᾱ]}. By the almost sure convergence of the

extreme eigenvalues to α and ᾱ (Bai and Silverstein 2010, Theorem 5.11), we have that

[min1≤k≤` λk,max1≤k≤` λk] ⊂
[

1
2
α, ᾱ + 1

]
almost surely for all large n, while by the second

Helly-Bray theorem (Smith 2006) with the function u 7→ u−2 continuous on
[

1
2
α, ᾱ + 1

]
, we

have
1

`

∑̀
k=1

λ−2
k

a.s.→
∫ ᾱ

α

1

x2

1

2πxα

√
(ᾱ− x)(x− α)dx =

1

(1− α)3
.

This, together with uniform integrability of the sequence, implies that

E

[
n2

`
z′i (Z

′Z)
−2
(ij) zi

]
=
n2

`
E
[
tr
(
(Z ′Z)

−2
(ij)

)]
=

n2

(n− 2)2E

[
1

`

∑̀
k=1

λ−2
k

]
→ 1

(1− α)3
,
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and also

var
(

tr
(
(Z ′Z)

−2
(ij)

))
=

`2

(n− 2)4 var

(
1

`

∑̀
k=1

λ−2
k

)
= o

(
`2

n4

)
.

Similarly, by using the second Helly-Bray theorem with the function u 7→ u−4, we can

determine the order of

E
[
z′i (Z

′Z)
−4
(ij) zi

]
= E

[
tr
(
(Z ′Z)

−4
(ij)

)]
=

`

(n− 2)4E

[
1

`

∑̀
k=1

λ−4
k

]
= O

(
`

n4

)
.

By independence of zi from (Z ′Z)−2
(ij) and across i, zero mean, unit variance and finiteness

of the fourth moments of zi, using the inequality on quadratic forms with power 2 (Bai

and Silverstein 2010, Lemma B.26) applied to the conditional variance and then taking

unconditional expectations, we have

E
[
var
(
z′i (Z

′Z)
−2
(ij) zi| (Z

′Z)(ij)

)]
≤ C̄E

[
z4
ik

]
E
[
tr
(
(Z ′Z)

−4
(ij)

)]
for an absolute constant C̄. By the analysis of variance formula, var

(
z′i (Z

′Z)−2
(ij) zi

)
equals

E
[
var
(
z′i (Z

′Z)
−2
(ij) zi| (Z

′Z)(ij)

)]
+ var

(
E
[
tr
(
z′i (Z

′Z)
−2
(ij) zi

)
| (Z ′Z)(ij)

])
≤ C̄E

[
z4
ik

]
E
[
tr
(
(Z ′Z)

−4
(ij)

)]
+ var

(
tr
(
(Z ′Z)

−2
(ij)

))
.

The first term is O (`/n4) , while the second is o (`2/n4) , thus

var

(
n2

`
z′i (Z

′Z)
−2
(ij) zi

)
= o (1) ,

implying that
n2

`
z′i (Z

′Z)
−2
(ij) zi

p→ 1

(1− α)3
.

Define vector gij by

gij =
√
`

(Z ′Z)−1
(ij) zi√

z′i (Z
′Z)−2

(ij) zi

.

Then, conditional on Z\ {zj} , `−1/2g′ijzj
d→ N (0, 1) , as `−1g′ijgij = 1, by a version of the

central limit theorem (Pötscher and Prucha 2003, Theorem 29). As the limit does not depend

on Z\ {zj} , it is also unconditional limit. Then, using Slutsky’s theorem,

√
n p

(ij)
ij =

√
`

n

√
n2

`
z′i (Z

′Z)−2
(ij) zi

g′ijzj√
`

d→
√
α

√
1

(1− α)3
N (0, 1)

d
= N

(
0,

α

(1− α)3

)
.

Consider now the diagonal elements p
(ij)
ii and p

(ij)
jj in the denominator of (2). Under

the assumptions made, both converge to a constant limit α/ (1− α) (Anatolyev and Yaskov

2017), making the denominator of (2) converge in probability to (1 + α/ (1− α))2 − 02 =

1/ (1− α)2 . By Slutsky’s theorem, the limiting distribution of
√
n pij is N

(
0, α (1− α)

)
. �
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