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Abstract

The paper considers a conditionally heteroskedastic linear regression setup with few regressors of

interest and many nuisance covariates. We propose to subject the parameters corresponding to

those nuisance covariates to a generalized ridge shrinkage. We show that under the assumption

of dense random effects from the nuisance covariates, the ridge-out estimator of the parameters of

interest is conditionally unbiased, and derive the optimal ridge intensity that delivers conditional

efficiency. When tight structures on the variance of random effects are imposed, the asymptotic

variance of the ridge-out estimator, under the dimension asymptotics, may be arbitrarily smaller

than that of the least squares estimator. We also demonstrate how the optimal ridge-out estimator

can be implemented under tight structures on the variance of random effects, and run simulation

experiments where significant efficiency gains are possible to reach.
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1 Introduction

Applied statisticians often run ‘long’ regressions, where one is interested in one or maximum a handful

of ‘structural’ coefficients, while throwing in a lot of other regressors whose coefficients are of at most

secondary importance, or of no importance at all, in order to control all factors that may affect the

outcome variable (Angrist and Hahn 2004, Cattaneo, Jansson, and Newey, 2018). When considered

as a group, these ‘nuisance’ regressors (which we call covariates) may have a significant effect on

the outcome as a group, but that effect comes from small effects of each of these covariates. These

effects can be elegantly formalized as a hypothesis of dense random effects (Dicker and Erdogdu 2017,

Dobriban and Wager, 2018, Liu and Dobriban, 2020) meaning that each covariate has a small (possibly

independent) effect of the outcome variable.

As is well-known from the Frisch-Waugh-Lovell theorem (Frisch and Waugh, 1933, Lovell, 1963),

the least squares estimation of the coefficients of interest together with the nuisance coefficients is

equivalent to first partialling out (in another terminology, filtering out) the nuisance regressors and

running least squares of partialled-out outcomes on the partialled-out regressors. However, in the

presence of many covariates with special structures imposed on their coefficients, other, more beneficial

opportunities arise. We show that under the assumption of dense random effects, ridge-type shrinkage

applied to the covariates, which results in a ridge-out estimator for the parameters of interest, leads

to more efficient estimation than least squares. Notice that the interest to the ridge machinery has

increased lately, especially in relation to high-dimensional environments, which in conjunction provide

new opportunities – see, inter alia, Dicker (2016), van Wieringen and Peeters (2016), Park (2017),

Dobriban and Wager (2018) and Anatolyev (2020); see also the survey by van Wieringen (2023).

For a conditionally heteroskedastic linear regression, we derive the form of optimal generalized

ridge intensity, which turns out to have a particular non-trivial form, and a closed-form expression for

the conditional variance. The optimal ridge-out estimator turns out to achieve the efficiency bound

for linear unbiased estimation. Moreover, it is numerically equivalent to the GLS estimator of the

coefficients of interest if the regression is viewed as a general mixed model (Robinson, 1991, Jiang,

1996), with the effects from covariates being the elements of the combined error. We allow the number

of these effects, however, to asymptotically grow and, in particular, be proportional to the sample size.

For a couple of specific cases of random effects, we derive the limit of the variance ratio of the

optimal ridge-out and least squares estimators under the dimension asymptotics. The variance ratio

turns out to be able to take any values between 0 and 1 – that is, ridge-out is able to achieve large
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asymptotic efficiency gains compared to least squares when the numerosity of covariates is sizable, in a

stark contrast to the conventional few-covariate asymptotic environment, in which the ridge machinery

does not alter the asymptotic properties of estimators.

In the last part of the paper, we show how the optimal ridge-out estimation can be implemented,

and verify its unbiasedness and relative efficiency in a small simulation study, where it turns out

possible to attain significant efficiency gains. We also verify the ability of variance estimates to

account for the actual variability of the ridge-out parameter estimates.

We emphasize that throughout the theory – except in the specific examples, – we do not place

any distributional assumptions on any objects – not on the regression errors, not on the regressors of

interest, not on the covariates, not on the random effects (beyond, of course, existence of necessary

moments). The covariance structure of the regressors and/or covariates is not restricted either.

The paper is organized as follows. In section 2, we lay out the setup, describe the ridge-out

estimator, and derive its properties, both generally in finite samples and asymptotically with certain

structures imposed on the random effects. In section 3, we describe implementation under those

certain structures, and study finite sample properties of the ridge-out estimator in simulations. Section

4 concludes. The Appendix contains technical derivations and proofs. A remark on notation: tr (A)

denotes a trace of a square matrix A, and by λj (A) we denote the jth largest eigenvalue of a symmetric

positive semidefinite matrix A.

2 Ridge-out estimator

2.1 Setup

For a random sample {(yi, xi, wi)}ni=1, we consider the regression model

yi = x′iβ0 + w′iγ0 + ei, (1)

where β0 is k × 1 vector of structural coefficients, γ0 is m× 1 vector of other coefficients, and

E [ei|xi, wi] = 0.

Most of our results hold in the general case of conditional heteroskedasticity, where the individual

variances σ2
i = E

[
e2
i |xi, wi

]
vary with observations. In the examples, we impose conditional ho-

moskedasticity, σ2
i = σ2 for all i = 1, ..., n, in order to obtain clear-cut insights. Note that we do not

impose any distributional assumptions on the error term, apart from existence of conditional moments.
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As can be seen from (1), the set of right side variables is partitioned into two groups: xi are the

(few) regressors, while wi are the (possibly many) covariates. The partition into the two groups is

such that the vector β0 collects (i) the coefficients of interest (often, a single coefficient) corresponding

to the factors of interest, and (ii) those coefficients that correspond to other influential factors. In

contrast, the vector γ0 collects the marginal effects for nuisance covariates, which are of no interest,

which are numerous, and which have a significant influence on the outcome variable only as a group.

Our framework allows unrestricted covariance structures among the regressors, among the covariates,

and between the two groups.

In a matrix notation,

Y = Xβ0 +Wγ0 + e, (2)

where Y = (y1, ..., yn)′ is n×1, X = (x1, ..., xn)′ is n×k, W = (w1, ..., wn)′ is n×m, and e = (e1, ..., en)′

is n × 1. We assume that the rank of matrix (X,W ) equals its column dimension k + m. Denote for

future use the projection and annihilation matrices PW = W (W ′W )−1W ′, MW = In − PW , PX =

X (X ′X)−1X ′ and MX = In−PX . Due to random sampling, the error vector satisfies E [e|X,W ] = 0

and E [ee′|X,W ] = diag
{
σ2
i

}n
i=1
≡ Σ.

We impose the following random effects design for the covariates. It means that each covariate

has a small random effect on the outcome variable, see Dobriban and Wager (2018). Initially we make

it more general than that in Dobriban and Wager (2018), and make it as restrictive when confronted

with practical implementation.

Assumption 1 Assume the dense random effects covariate design: γ0 is a random vector with

E (γ0|X,W ) = 0 and var (γ0|X,W ) = Γ, conditionally independent of e.

Note that we do not impose any distributional assumptions on γ0 either.

2.2 Ridge-out estimation

We consider a generalized ridge regression estimator where only the γ coefficients are penalized.

(
β̂Ξ (Ξ)

γ̂Ξ (Ξ)

)
=

 X ′X X ′W

W ′X Ξ

−1  X ′

W ′

Y, (3)

where Ξ is a symmetric positive definite m×m ‘ridge’ matrix that is a function of only (X,W ) . The

least squares estimator of β0 corresponds to using Ξ = W ′W ; let us denote it by β̂LS = β̂Ξ (W ′W ) .

We call the estimator β̂Ξ (Ξ) of β0 a ridge-out estimator, a hybrid of the partialled-out least squares
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estimator β̂LS and the regular generalized ridge estimator (Hoerl and Kennard, 1970) when only

the γ-coefficients are penalized.1 The ridge matrix Ξ generalizes the form of the classical ridge of

Ξ = W ′W − λW Im, for a scalar penalty parameter λW > 0.

2.3 Properties of ridge-out

It turns out that for any legitimate choice of ridge intensity Ξ, the ridge-out estimator is unbiased

under the assumption of random effects.

Proposition 1 Under Assumption 1, β̂Ξ (Ξ) is conditionally unbiased.

The unbiasedness of the ridge-out estimator is a remarkable property. Recall that the standard

ridge machinery introduces bias for all the coefficient estimates, this bias being to be traded for a

smaller variance. The ridge-out method instead keeps the estimates of the structural parameters un-

biased (like the least squares does), and the variance reduction is achieved at the expense of biasedness

of the nuisance coefficient estimates only, those that are of no interest.

The following proposition provides an optimal choice of ridge intensity in the sense of minimal

conditional variance of the ridge-out estimates.

Proposition 2 Under Assumption 1, the conditional variance of β̂Ξ (Ξ) is equal to

var
(
β̂Ξ (Ξ) |X,W

)
=
(
X ′ΨΞX

)−1
X ′ΨΞ

(
WΓW ′ + Σ

)
ΨΞX

(
X ′ΨΞX

)−1
, (4)

where ΨΞ = In −WΞ−1W ′, and is minimized by choosing

Ξ∗ = W ′
(
In −

(
PW −WΓW ′ − Σ

)−1 )
W.

The minimal conditional variance is

var
(
β̂Ξ (Ξ∗) |X,W

)
=
(
X ′
(
WΓW ′ + Σ

)−1
X
)−1

. (5)

Note that when no ridging is performed, Ξ = W ′W and ΨΞ = MW , which simply leads to the

conditional variance of least squares, which is suboptimal,

var
(
β̂LS |X,W

)
=
(
X ′MWX

)−1
X ′MWΣMWX

(
X ′MWX

)−1
, (6)

1The whole estimator
(
β̂Ξ (Ξ)′ , γ̂Ξ (Ξ)′

)′
can also be viewed as a generalized ridge estimator with a constraint that

no ridging of the β-subvector is done.
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and so (6) is generally larger than (5). Evidently, one may do better in terms of conditional variance

than partialling out least squares implied by running least squares, keeping unbiasedness intact at

the same time. The optimal ridging shrinks the least squares-implied block W ′W by the matrix

W ′ (PW −WΓW ′ − Σ)−1W, which evidently has a more complex structure than shrinkage towards

the identity matrix implied by the classical ridge. The optimal amount of ridging depends, in addition

to realization of covariates, on the conditional error variance matrix Σ and the explanatory power

of covariates WΓW ′. Interestingly, when γ0 = 0 and so Γ = 0, the optimal ridge-out does apply

shrinkage to W ′W and is thus still superior to least squares in terms of conditional efficiency.

2.4 General mixed model perspective

The model (2) under Assumption 1 can be viewed as a general mixed model (e.g., Robinson, 1991,

Jiang, 1996)

Y = Xβ0 + u,

where u = Wγ0 + e with the properties E [u|X,W ] = 0 and var
(
u|X,W

)
= WΓW ′ + Σ. The efficient

(best linear unbiased) estimator of β for this model is

β̂GLS =
(
X ′
(
W ′ΓW + Σ

)−1
X
)−1

X ′
(
WΓW ′ + Σ

)−1
Y,

with conditional variance

var
(
β̂GLS |X,W

)
=
(
X ′
(
WΓW ′ + Σ

)−1
X
)−1

,

which coincides with var
(
β̂Ξ (Ξ∗) |X,W

)
. The next result then follows.

Proposition 3 Under Assumption 1, the optimal ridge-out estimator is efficient in the class of linear

unbiased estimators.

Moreover, it turns out that the ridge-out and GLS estimators are numerically equivalent.

Proposition 4 The optimal ridge-out and GLS estimators are equal: β̂Ξ (Ξ∗) = β̂GLS .

2.5 Structured random effects

Most interesting cases of the random design are the following two special structures of Γ.
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• Design A. The special case of random effects design is Γ =
α2

m
Im.

• Design B. The special case of random effects design is Γ = α2 (W ′W )−1 .

In Design A, the effects of different covariates are uncorrelated but depend on their values; in

Design B, orthonormalization is invoked to equalize the impact across the covariates. Here, α2 indexes

the strength of the signal, the signal being uniformly distributed across the m covariates. In the case

of Design A, the optimal ridge-out equals

Ξ∗ = W ′

(
In −

(
PW −

α2

m
WW ′ − Σ

)−1
)
W,

so that

var
(
β̂Ξ (Ξ∗) |X,W

)
=

(
X ′
(
α2

m
WW ′ + Σ

)−1

X

)−1

.

In the case of Design B, the optimal ridge-out equals

Ξ∗ = W ′
(
In −

(
(1− α2)PW − Σ

)−1 )
W,

so that

var
(
β̂Ξ (Ξ∗) |X,W

)
=
(
X ′
(
α2PW + Σ

)−1
X
)−1

.

Again, being optimal in the class of generalized ridge estimators, the optimal ridge-out estimator

is conditionally more efficient than least squares.

2.6 Examples and asymptotics

In order to quantify relative efficiency, we consider a simple example, where it is possible to find the

limiting variances of both least squares and ridge-out estimators in a closed form, and compare them

in terms of asymptotic efficiency. To this end, first, we impose conditional homoskedasticity, Σ = σ2In.

Second, we employ the dimension asymptotics, which is characteristic of the random matrix theory

(e.g., see Bai and Silverstein, 2010) and regression theory with many regressors (e.g., see Anatolyev,

2012):

Assumption 2 m→∞ along with n→∞, such that m/n = µ+ o(n−1/2), where 0 ≤ µ < 1, while

k stays fixed.

The conventional asymptotics obtains for µ = 0.
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Figure 1: Figure 1. Asymptotic variance ratio as a function of µ.

Set k = 1. Let the only column of X contain i.i.d. zero mean unit variance random variables,

and each of m columns of W contain i.i.d. zero mean unit variance random variables that are also

independent of X.2 Denote

ω =
α2

µσ2
.

Proposition 5 Under the dimension asymptotics of Assumption 2, we have, for the least squares

and optimal ridge-out, respectively,

var
(
β̂Ξ (Ξ∗) |X,W

)
var
(
β̂LS |X,W

) P→ (1− µ)×


2√

(ω−1 + µ− 1)2 + 4ω−1 − (ω−1 + µ− 1)
under Design A,

(
1− µ2

ω−1 + µ

)−1

under Design B.

The variance ratio depends on α2 via ω−1. Under Design A, if the signal strength vanishes, α2 → 0,

then limn · var
(
β̂Ξ (Ξ∗) |X,W

)
= σ2 < limn · var

(
β̂LS |X,W

)
= (1− µ)−1 σ2, and the inequality may

be very loose when the dimension ratio µ is large. Set α2 = µ and σ2 = 1. Then ω = 1 and

var
(
β̂Ξ (Ξ∗) |X,W

)
var
(
β̂LS |X,W

) P→ 2 (1− µ)√
µ2 + 4− µ

,

under Design A, and
var
(
β̂Ξ (Ξ∗) |X,W

)
var
(
β̂LS |X,W

) P→ 1− µ2

1 + µ− µ2

under Design B. The graphs of the limiting variance ratios are depicted on Figure 1, in blue for Design

A, and in orange for Design B.

2Independence of X and W is needed to obtain clean closed form formulas for the asymptotic variance ratio.
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The limiting variance ratio takes all values on [0, 1] . Under either design, when covariates are few

so that µ = 0, ridging them out is asymptotically negligible,3 as the regular ridge results only in finite

sample changes. Under either design, if covariates are many and 0 < µ < 1, returns from ridging-out

are monotonically increasing in µ, and for big µ the ridging-out can be arbitrarily more asymptotically

efficient than least squares.

3 Implementation

3.1 Feasible ridge-out

We try to outline implementation of the ridge-out estimator under Design A and Design B. A strong

assumption of this kind is needed to reduce degrees of freedom from too many in a general Γ. We also

need µ > 0. Implementation in practice is worthwhile only if one is confident of applicability of the

random effects assumption, as its violation will lead to an estimation bias.

To implement the ridge-out estimator, one needs reliable estimates of σ2 under homoskedasticity or

Σ under heteroskedasticity, on the one hand, and of α2, on the other. Let the full projection matrix be

P = (X,W )
(
(X,W )′ (X,W )

)−1
(X,W )′ with the diagonal elements {Pii}ni=1 and the corresponding

annihilation matrix be M = In−P with the diagonal elements {Mii}ni=1. Further, let ê = MY be the

vector of least squares residuals with elements {êi}ni=1. An estimate of σ2 can be easily constructed

as a sample variance of residuals:

σ̂2 =
ê′ê

n−m− k
.

Note that this estimator is exactly conditionally unbiased. Under conditional heteroskedasticity, we

take advantage of estimates of individual variances from Kline, Saggio and Sølvsten (2020), which are

robust to covariate numerosity:

σ̂2
i =

yiêi
Mii

.

These estimates originate from leave-one-out LS estimation and equality between LS residuals êi

corrected for leverage and leave-one-out LS residuals. Importantly, these estimates are exactly condi-

3Note that with no restrictions on α2, as µ→ 0 and α2 is fixed, ω−1 → 0 and the limit of n var
(
β̂Ξ (Ξ∗) |X,W

)
is σ2.
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tionally unbiased, and this property holds for any number of covariates once the rank condition holds.4

We construct the error variance matrix estimator as

Σ̂ =

 σ̂2In under conditional homoskedasticity,

diag
{
σ̂2
i

}n
i=1

under conditional heteroskedasticity.

The quantity α2 can be identified from the variation across nuisance coefficients γ′0γ0, and es-

timated from the sample variability of the coefficient estimates. Observe that for the least squares

estimates,

γ̂ = γ0 +
(
W ′MXW

)−1
W ′MXe. (7)

For Design A, we form quadratic forms of both sides of (7) with respect to the identity matrix, and

take expectations:

E
[
γ̂′γ̂
]

= E
[
γ′0γ0

]
+ E

[
tr
(
(W ′MXW )−1W ′MXΣMXW (W ′MXW )−1

)]
.

Under Design A, E [γ′0γ0] = tr (E [γ0γ
′
0]) = tr (Γ) = α2. Plugging in the sample analogs – γ̂′γ̂ for the

left side and Σ̂ for Σ in the right side, – we obtain an equation defining the estimate of α2:

α̂2 = γ̂′γ̂ − tr
(
(W ′MXW )−1W ′MXΣ̂MXW (W ′MXW )−1

)
.

For Design B, we form quadratic forms of both sides of (7) with respect to the matrix W ′W , and take

expectations:

E
[
γ̂′
(
W ′W

)
γ̂
]

= E
[
γ′0
(
W ′W

)
γ0

]
+ E

[
tr
(
(W ′MXW )−1W ′MXΣMXW (W ′MXW )−1

(
W ′W

) )]
.

Under Design B, E [γ′0 (W ′W ) γ0] = tr (E [W ′WE [γ0γ
′
0|W ]]) = tr (E [W ′WΓ]) = α2tr (Im) = mα2.

Plugging in the sample analogs – γ̂′ (W ′W ) γ̂ for the left side and Σ̂ for Σ in the right side, – we obtain

an equation defining the estimate of α2:

α̂2 =
γ̂′ (W ′W ) γ̂ − tr

(
(W ′MXW )−1W ′MXΣ̂MXW (W ′MXW )−1(W ′W )

)
m

.

4The unbiasedness property follows because, due to conditional mean zero errors and random sampling,

E
[
σ̂2
i |X,W

]
= M−1

ii E
[ (
x′iβ0 + w′iγ0 + ei

) n∑
j=1

Mijej |X,W
]

= M−1
ii

(
x′iβ0 + w′iγ0

)
E
[ n∑
j=1

Mijej |X,W
]

+M−1
ii E

[
ei

n∑
j=1

Mijej |X,W
]

= M−1
ii

n∑
j=1

MijE [eiej |X,W ] = σ2
i .
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Note that under both designs, the second term in α̂2 is an exactly unbiased estimate of its expectation

because we use an estimate Σ̂ that is exactly conditionally unbiased. Then, we set the feasible ridge-

out correspond to using σ̂2In in construction of α̂2 in the homoskedastic case and Σ̂ in construction

of α̂2 in the heteroskedastic case, and using σ̂2In in construction of Ξ∗ and var
(
β̂Ξ (Ξ∗) |X,W

)
.

3.2 Simulation evidence

We set β = 1, σ2 = 1 and vary α2 in the set {0, 0.5, 2.0, 5.0} . The main regressors are drawn indepen-

dently from N (0, 1) . We generate 1
5 of the nuisance regressors from B

(
1
2

)
, another 1

5 from U [0, 1] , yet

another 1
5 from N (0, 1) , yet another 1

5 from χ2(1), and the last 1
5 from LN (0, 1) , independently from

each other. We intentionally do not normalize the nuisance regressors so that the mean and variances

may vary across them. The errors are generated by ei = σiηi, where ηi are drawn independently from

N (0, 1) ; in the homoskedastic case, σi = 1, and in the heteroskedastic case, σi =
√
nPii/ (k +m).

Note that in both cases, the error variance is unity.5 We vary n in the set {100, 200, 400} and m/n

in the set
{

1
4 ,

1
2 ,

3
4

}
. Because α̂2 is not guaranteed to be positive, in unfavorable circumstances with

small sample sizes when α̂2 turns out negative, we replace the ridge-out estimator by the least squares

one. All figures are based on 5,000 simulation runs.

The results are reported in Table 1 for Design A and in Table 2 for Design B, where we report the

root mean squared error (RMSE) of least squares and feasible ridge-out estimators. We do not report

estimation biases, as they are negligibly small, typically in the range 0.0005÷0.002, so all RMSE figures

effectively coincide with corresponding standard deviations. The tiny biases of the feasible ridge-out

estimator are consistent with the unbiasedness property of its infeasible version (cf. Proposition 1).

One can see from the tables that for all parameter and design combinations, there are visible efficiency

gains from ridging out, monotonically and sharply increasing with m/n. In percentage terms, they are

also higher for higher n; these percentages reach as high as almost 50% at times. The efficiency gains

are very similar in the homoskedastic and heteroskedastic designs, the differences being tiny despite

much more noisy estimation of Σ in the latter case. Interestingly, the efficiency of least squares is flat

with respect to values of α2, while the variance of the ridge-out estimator tends to be U-shaped, less

pronounced for Design A and more pronounced for Design B.

We also verify the ability of variance estimates to account for the actual variability of the ridge-

out parameter estimates. To this end, we construct a t-statistic based on the ridge-out estimates

5In the latter case, from the identity
∑n

i=1 Pii = rk (P ) and symmetry, E
[
σ2
i

]
= E [rk (P )] / (k +m) = 1.
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and conditional variance estimates computed from (5). We approximate the critical values by the

quantiles of the normal distribution.6 In Table 3, we report rejection rates exhibited by the ridge-out

t-statistic, corresponding to the 5% nominal size, for one moderate and one extreme values of α2. The

size distortions turns out to be small, despite pretty small sample sizes, not exceeding 1% in most

cases except extremal ones; they are comparable in the homoskedastic and heteroskedastic cases and

pretty flat with respect to small and moderate values of α2. Towards combinations of high α2 and

high µ, the distortions kick in, and the actual size may reach twice the nominal size, though only for

Design B.

4 Conclusion

When the regression contain many covariates of no interest, it is convenient and useful to apply the

ridge machinery to these covariates. Under the hypothesis of dense random effects imposed on these

covariates, the ridge-out is able to achieve a higher efficiency of estimation than that of least squares,

while the optimal ridge-out estimator turns out to be best linear unbiased. In stylized examples, the

efficiency gains are approximately proportional to the dimensionality of covariates. The optimal ridge-

out methodology may be implemented in practice exploiting the variation across coefficient estimators

of the nuisance covariates. Simulation outcomes show that in practice, the efficiency gains relative to

least squares may well be large, while the size distortions of hypothesis tests based on the t-statistic

tend to be small.

6The derivation of the asymptotic distribution of the ridge-out estimator is beyond the scope of this paper. This

asymptotic distribution under suitable conditions is expected to be normal, as suggested by the literature on regression

analysis with many regressors under dimension asymptotics (e.g., Anatolyev, 2012; Cattaneo, Jansson, and Newey, 2019).

Asymptotic normality is pretty evident from the representation of β̂Ξ (Ξ)−β0 as a sum of weighted averages of γ0 and e.
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Table 1. Root mean squared error of least squares and feasible optimal ridge-out estimators, DGP of

Design A.

α2 = 0 α2 = 0.5 α2 = 2.0 α2 = 5.0 α2 = 0 α2 = 0.5 α2 = 2.0 α2 = 5.0

homoskedasticity heteroskedasticity

n = 100

least squares m = 25 0.118 0.117 0.118 0.119 0.118 0.119 0.118 0.116

ridge-out 0.111 0.111 0.113 0.115 0.112 0.114 0.115 0.114

least squares m = 50 0.147 0.144 0.147 0.144 0.144 0.144 0.144 0.146

ridge-out 0.130 0.125 0.127 0.128 0.127 0.127 0.128 0.129

least squares m = 75 0.208 0.210 0.208 0.207 0.205 0.204 0.207 0.210

ridge-out 0.166 0.163 0.160 0.156 0.165 0.159 0.161 0.160

n = 200

least squares m = 50 0.082 0.082 0.082 0.082 0.083 0.083 0.083 0.083

ridge-out 0.078 0.078 0.079 0.080 0.079 0.079 0.080 0.081

least squares m = 100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

ridge-out 0.088 0.086 0.086 0.090 0.088 0.087 0.088 0.089

least squares m = 150 0.144 0.144 0.144 0.143 0.143 0.143 0.143 0.143

ridge-out 0.116 0.114 0.110 0.106 0.116 0.114 0.109 0.109

n = 400

least squares m = 100 0.057 0.059 0.058 0.058 0.058 0.058 0.058 0.058

ridge-out 0.054 0.056 0.056 0.056 0.055 0.054 0.056 0.057

least squares m = 200 0.072 0.072 0.071 0.072 0.071 0.071 0.071 0.070

ridge-out 0.062 0.061 0.061 0.064 0.062 0.061 0.061 0.063

least squares m = 300 0.101 0.102 0.100 0.100 0.102 0.102 0.101 0.100

ridge-out 0.082 0.079 0.074 0.074 0.081 0.079 0.074 0.072
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Table 2. Root mean squared error of least squares and feasible optimal ridge-out estimators, DGP of

Design B.

α2 = 0 α2 = 0.5 α2 = 2.0 α2 = 5.0 α2 = 0 α2 = 0.5 α2 = 2.0 α2 = 5.0

homoskedasticity heteroskedasticity

n = 100

least squares m = 25 0.118 0.117 0.118 0.119 0.118 0.119 0.119 0.120

ridge-out 0.109 0.106 0.112 0.115 0.111 0.110 0.114 0.117

least squares m = 50 0.147 0.144 0.144 0.144 0.143 0.146 0.144 0.145

ridge-out 0.123 0.114 0.125 0.132 0.120 0.114 0.127 0.135

least squares m = 75 0.208 0.210 0.211 0.207 0.205 0.210 0.210 0.206

ridge-out 0.148 0.126 0.146 0.166 0.147 0.126 0.151 0.167

n = 200

least squares m = 50 0.082 0.082 0.082 0.082 0.083 0.083 0.083 0.083

ridge-out 0.076 0.075 0.078 0.080 0.077 0.076 0.079 0.081

least squares m = 100 0.100 0.100 0.102 0.100 0.101 0.101 0.101 0.100

ridge-out 0.085 0.077 0.088 0.092 0.086 0.079 0.089 0.093

least squares m = 150 0.144 0.144 0.143 0.143 0.142 0.144 0.145 0.143

ridge-out 0.107 0.084 0.099 0.115 0.108 0.084 0.106 0.117

n = 400

least squares m = 100 0.057 0.059 0.058 0.058 0.058 0.058 0.058 0.057

ridge-out 0.053 0.054 0.055 0.056 0.054 0.053 0.055 0.056

least squares m = 200 0.072 0.072 0.071 0.072 0.073 0.071 0.071 0.072

ridge-out 0.061 0.055 0.062 0.067 0.062 0.055 0.063 0.067

least squares m = 300 0.101 0.102 0.100 0.100 0.102 0.101 0.100 0.100

ridge-out 0.076 0.058 0.071 0.082 0.077 0.077 0.072 0.081
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Table 3. Actual test sizes corresponding to 5% nominal size for feasible optimal ridge-out estimator.

α2 = 0.5 α2 = 5.0 α2 = 0.5 α2 = 5.0 α2 = 0.5 α2 = 5.0 α2 = 0.5 α2 = 5.0

Design A Design B

homoskedasticity heteroskedasticity homoskedasticity heteroskedasticity

n = 100

m = 25 6.1% 5.1% 6.7% 6.7% 5.2% 5.2% 6.1% 6.6%

m = 50 5.0% 5.3% 5.8% 6.1% 5.1% 6.2% 5.6% 6.9%

m = 75 4.3% 6.5% 5.0% 6.6% 5.8% 10.6% 6.1% 10.9%

n = 200

m = 50 5.3% 5.3% 6.1% 6.0% 4.5% 5.3% 4.6% 5.8%

m = 100 4.7% 5.3% 5.1% 6.1% 4.6% 5.7% 5.1% 6.5%

m = 150 4.3% 6.3% 4.2% 6.1% 5.2% 9.9% 5.6% 10.2%

n = 400

m = 100 4.8% 5.5% 6.0% 5.6% 4.0% 5.2% 4.9% 5.2%

m = 200 5.4% 4.8% 5.6% 5.7% 4.5% 5.5% 4.9% 6.3%

m = 300 4.4% 6.5% 4.3% 6.4% 5.3% 10.6% 5.1% 10.0%
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A Appendix

Denote ΥΞ =
(
X ′X −X ′WΞ−1W ′X

)−1
.

Lemma 1. The following equality holds:

ΥΞX
′WΞ−1 =

(
X ′X

)−1
X ′W

(
Ξ−W ′PXW

)−1
. (8)

Proof of Lemma 1. Premultiply the identity

Ξ−W ′PXW = Ξ−W ′PXW.

by X ′WΞ−1 to get

X ′WΞ−1
(
Ξ−W ′PXW

)
= X ′W −X ′WΞ−1W ′PXW.

Represent X ′W on the right side as X ′PXW, then

X ′WΞ−1
(
Ξ−W ′PXW

)
=
(
X ′X −X ′WΞ−1W ′X

) (
X ′X

)−1
X ′W.

Premultiplying by ΥΞ and postmultiplying by (Ξ−W ′PXW )−1, we get

ΥΞX
′WΞ−1 =

(
X ′X

)−1
X ′W

(
Ξ−W ′PXW

)−1

as stated. �

Proof of Proposition 1. Plugging in the model, we get

(
β̂Ξ (Ξ)

γ̂Ξ (Ξ)

)
=

 X ′X X ′W

W ′X Ξ

−1 X ′Xβ0 +X ′Wγ0

W ′Xβ0 +W ′Wγ0

+

 X ′e

W ′e

 .

By the partitioned matrix inverse formula,

β̂Ξ (Ξ) =
[

ΥΞ −ΥΞX
′WΞ−1

] X ′

W ′

Y
= ΥΞX

′ (In −WΞ−1W ′
)
Y

= β0 + ΥΞX
′ (In −WΞ−1W ′

)
(Wγ0 + e) .

Then, the bias of β̂Ξ (Ξ) is

E
[
ΥΞX

′ (In −WΞ−1W ′
)
W
]
E [γ0] + E

[
ΥΞX

′ (In −WΞ−1W ′
)
E [e|X,W ]

]
= 0.

�
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Proof of Proposition 2. The conditional variance of β̂Ξ (Ξ) is

var
(
β̂Ξ (Ξ) |X,W

)
= ΥΞX

′ (In −WΞ−1W ′
) (
WΓW ′ + Σ

) (
In −WΞ−1W ′

)′
XΥΞ

=
(
X ′ΨΞX

)−1
X ′ΨΞ

(
WΓW ′ + Σ

)
ΨΞX

(
X ′ΨΞX

)−1
,

using Lemma 1, where ΨΞ = In−WΞ−1W ′. It is well known that this is minimized when the sandwich

collapses, which occurs when

ΨΞ =
(
WΓW ′ + Σ

)−1
,

or

In −WΞ−1W ′ =
(
WΓW ′ + Σ

)−1
.

Let us find a symmetric Ξ with m(m+ 1)/2 distinct elements that satisfies this system of n(n+ 1)/2

distinct equations. Premultiply by W ′ and postmultiply by W to get

W ′WΞ−1W ′W = W ′W −W ′
(
WΓW ′ + Σ

)−1
W,

from where one can express out optimal Ξ:

Ξ∗ = W ′W
[
W ′
(
In −

(
WΓW ′ + Σ

)−1 )
W
]−1

W ′W.

The corresponding conditional variance is, after collapsing the sandwich,

var
(
β̂Ξ (Ξ∗) |X,W

)
=

(
X ′ΨΞ∗X

)−1

=
(
X ′
(
WΓW ′ + Σ

)−1
X
)−1

.

Finally, by the Woodbury matrix identity,

Ξ∗ = W ′W
[ (
W ′W

)−1 −
(
W ′W

)−1
W ′
(
W
(
W ′W

)−1
W ′ −WΓW ′ − Σ

)−1
W
(
W ′W

)−1
]
W ′W

= W ′
(
In −

(
PW −WΓW ′ − Σ

)−1 )
W.

�

Proof of Proposition 4. From the proof of Proposition 1, we have

β̂Ξ (Ξ∗) = ΥΞ∗X
′ (In −WΞ∗−1W ′

)
Y,

where ΥΞ∗ =
(
X ′X −X ′WΞ∗−1W ′X

)−1
. From the result of Proposition 2, we have In−WΞ∗−1W ′ =

(WΓW ′ + Σ)−1 , hence ΥΞ∗ =
(
X ′ (WΓW ′ + Σ)−1X

)−1
, and so

β̂Ξ (Ξ∗) =
(
X ′
(
WΓW ′ + Σ

)−1
X
)−1

X ′
(
WΓW ′ + Σ

)−1
Y

= β̂GLS .
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Derivations for Proposition 5. For the least squares estimator,

n · var
(
β̂LS |X,W

)
= σ2

(
X ′MWX

n

)−1
P→ σ2

1− µ
,

because

E

[
X ′MWX

n

]
=

1

n
E
[
tr
(
MWXX

′)] = E
[
tr
(
MWE

[
XX ′

])]
=

1

n
E [tr (MW )] = 1− µ+ o(n−1/2),

while the variance asymptotically vanishes as m,n → ∞ (see, for example, Hansen, Hausman and

Newey, 2008).

In Design A, for the optimal ridge-out estimator,

var
(
β̂Ξ (Ξ∗) |X,W

)
= σ2

(
X ′
(
In +

α2

mσ2
WW ′

)−1

X

)−1

.

To determine the limit, let us compute

1

n
E

[
X ′
(
In +

α2

mσ2
WW ′

)−1

X

]
=

1

n
E

[
tr

((
In +

α2

mσ2
WW ′

)−1

E
[
XX ′

])]

=
1

n
E

[
tr

((
In +

α2

mσ2
WW ′

)−1
)]

=
1

n
E

 n∑
j=1

λj

(
In +

α2

mσ2
WW ′

)−1


=
1

n

n∑
j=1

E

(1 +
ω + o(n−1/2)

n
λj
(
WW ′

))−1
 .

Now, λj (WW ′) = λj (W ′W ) for the m non-zero eigenvalues; the other n−m eigenvalues are equal to

zero. Therefore,

1

n
E

[
X ′
(
In +

α2

mσ2
WW ′

)−1

X

]
=

1

n

m∑
j=1

E

(1 +
ω + o(n−1/2)

n
λj
(
W ′W

))−1


+
1

n

n∑
j=m+1

E

(1 +
ω + o(n−1/2)

n
0

)−1


= µE
[(

1 + ωλ(Σ̂W )
)−1]

+ (1− µ) + o(n−1/2),

where Σ̂W = n−1W ′W is the sample variance of W.
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Let a =
(
1−√µ

)2
and b =

(
1 +
√
µ
)2
. By the Marchenko-Pastur law (see, for example, Bai and

Silverstein 2010, section 3), in the dimension asymptotic limit,

E

[(
1 + ωλ

(
W ′W

n

))−1
]
→

∫ b

a

1

1 + ωx

1

2πxµ

√
(b− x)(x− a)dx

=
1

2ωµ

(√
1 + ω2 (1− µ)2 + 2ω (1 + µ)− 1− ω (1− µ)

)
.

Therefore,

E
[
n · var

(
β̂Ξ (Ξ∗) |X,W

)]
→ σ2

(
1

2ωµ

(√
1 + ω2 (1− µ)2 + 2ω (1 + µ)− 1− ω (1− µ)

)
+ (1− µ)

)−1

= 2σ2
(√

(ω−1 + µ− 1)2 + 4ω−1 − (ω−1 + µ− 1)
)−1

.

Because var
(
β̂LS |X,W

)
− var

(
β̂Ξ (Ξ∗) |X,W

)
is positive semi-definite, var

[
n · var

(
β̂Ξ (Ξ∗) |X,W

)]
is dominated by var

[
n · var

(
β̂LS |X,W

)]
, which asymptotically vanishes as m,n → ∞. Therefore,

n · var
(
β̂Ξ (Ξ∗) |X,W

)
converges to the above limit.

In Design B, for the optimal ridge-out estimator,

var
(
β̂Ξ (Ξ∗) |X,W

)
= σ2

(
X ′
(
In +

α2

σ2
PW

)−1

X

)−1

.

To determine the limit, let us compute

1

n
E

[
X ′
(
In +

α2

σ2
PW

)−1

X

]
=

1

n
E

[
tr

((
In +

α2

σ2
PW

)−1

E
[
XX ′

])]

=
1

n
E

 n∑
j=1

λj

(
In +

α2

σ2
PW

)−1


=
1

n

n∑
j=1

E
[(

1 + (µω + o(n−1/2))λj (PW )
)−1
]
.

Now, λj (PW ) are m eigenvalues of unity and n−m eigenvalues of zero. Therefore,

1

n
E

[
X ′
(
In +

α2

σ2
PW

)−1

X

]
=

1

n

m∑
j=1

E
[(

1 + µω + o(n−1/2)
)−1
]

+
1

n

n∑
j=m+1

E
[(

1 + (µω + o(n−1/2)) · 0
)−1
]

→ µ

1 + µω
+ 1− µ = 1− µ2ω

1 + µω
,

Because var
(
β̂LS |X,W

)
− var

(
β̂Ξ (Ξ∗) |X,W

)
is positive semi-definite, var

[
n · var

(
β̂Ξ (Ξ∗) |X,W

)]
is

dominated by var
[
n · var

(
β̂LS |X,W

)]
, which asymptotically vanishes as m,n→∞. Therefore,

n · var
(
β̂Ξ (Ξ∗) |X,W

) P→ σ2

(
1− µ2ω

1 + µω

)−1

.
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