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Abstract

We investigate, within flexible semiparametric and parametric frameworks, the

shape of the news impact curve (NIC) for the conditional skewness of stock returns,

i.e. how past returns affect present skewness. We find that returns may impact

skewness in ways that sharply differ from those proposed in earlier literature.

The skewness NIC may exhibit sign asymmetry, other types of non-linearity, and

even non-monotonicity. In particular, the newly discovered ‘rotated S’-shape of

the skewness NIC for the S&P500 index is intriguing. We explore, among other

things, properties of skewness NIC estimates and conditional density forecasts, the

term structure of the skewness NIC, and previously documented approaches to its

modeling.
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1 Introduction

It is an established empirical fact that stock returns exhibit asymmetry (see, for example

Peiro, 1999; Harvey & Siddique, 1999). Even though the mean-variance paradigm in

finance has prevailed for decades, there has been a considerable interest to unconditional

and conditional skewness of returns in the context of different financial applications.

Kraus & Litzenberger (1976), Simaan (1993), Harvey & Siddique (2000) among others

investigate the implications of skewness for the theory and empirics of asset prices. Kane

(1982), Athayde & Flôres (2004) develop theoretical models of portfolio choice taking

into account the skewness of returns. Patton (2004), Guidolin & Timmermann (2008),

and Ghysels et al. (2015), among others, provide empirical evidence of the significance

of skewness for portfolio choice. DeMiguel et al. (2013), Jha & Kalimipalli (2010), and

Neuberger (2012) investigate the economic importance of option-implied measures of

skewness. Recent empirical research (Rehman & Vilkov (2012), Amaya et al. (2015))

finds that firm-level skewness is a significant factor determining heterogeneity in the

cross-section of stock returns, and Schneider et al. (2016) argue that firm-level skewness is

capable of explaining low-risk anomalies, established in the literature, in the cross-section

of stocks. Finally, skewness has received considerable attention in the risk management

literature (see, for example, Duffie & Pan, 1997; Wilhelmsson, 2009; Bali et al., 2008;

Grigoletto & Lisi, 2009; Engle, 2011).

In his seminal work, Hansen (1994) proposes the autoregressive conditional density

(ARCD) framework, where the dynamics of parameters beyond the conditional mean and

variance may be conveniently modeled. However, the literature applying it to modeling

conditional skewness is pretty limited. The relevant papers use ad-hoc parametric speci-

fications for the news impact curve (NIC) of the skewness equation, i.e. how past returns

affect present conditional skewness.1 The voluminous GARCH literature provides lots

of versions for the volatility NIC thanks to the abundance of stylized facts related to

1The term NIC was introduced by Engle & Ng (1993) in the context of GARCH models for conditional
variance. For example, in the GARCH(1,1) model σ2

t = β0 + β−1σ
2
t−1 + β1σ

2
t−1z

2
t−1 the volatility NIC is

the last term β1σ
2
t−1z

2
t−1.
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volatility and high informational content of return data about it. Because the former are

pretty scarce and the latter is pretty low as far as skewness is concerned, there are few

suggestions related to the skewness NIC, and those proposed are weakly motivated.

In this paper we argue that the parametric forms proposed in the previous literature

describe the skewness dynamics poorly and demonstrate that the skewness NIC may

take on fancier shapes and can, more specifically, exhibit sign asymmetry and other

types of non-linearity, even including non-monotonicity. We show this by applying a

semiparametric technique that was previously used by Engle & Ng (1993) to study the

shape of the volatility NIC, to the skewness equation of the ARCD model with the Skewed

Generalized Error (SGE) distribution and EGARCH volatility equation.

Furthermore, within this ARCD framework, we fit a series of parametric specifications

for the skewness NIC that allow for its non-monotonicity and various degrees of non-

linearity. It turns out that stock return indexes exhibit diverse patterns of the skewness

NIC, some symmetric, some asymmetric, some monotone, some non-monotone; very few

are accordant with specifications used earlier in the literature. In particular, the S&P500

index reveals an interesting ‘rotated S’-shape of the skewness NIC, which is robust to

various perturbations, such as the removal of extreme events, mean, volatility or density

specification changes, and explicit accounting for jumps.

We also run a series of Monte-Carlo experiments confirming that the in-sample model

selection tools we use tend to locate the genuine skewness NIC. The estimates of the

NIC parameters are tightly concentrated around the true values, in sharp contrast to

unconditional skewness estimates (see Kim & White, 2004). But, as expected, in out-of-

sample multiperiod density forecasting experiments (similar to Maheu & McCurdy, 2011)

simpler NIC shapes yield a slightly better performance than those that are optimal for

describing the skewness dynamics in-sample.

We also estimate the skewness NIC using the ‘direct approach’ of Harvey & Siddique

(1999) and León et al. (2005), who model skewness as a time varying parameter of

a peculiar conditional distribution. Several complications arise from this approach,
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in particular, the presence of complex nonlinear mapping that has to be repeatedly

inverted and theoretical bounds for the skewness-kurtosis pair, as well as dubious highly

curved skewness NIC. In addition, the empirical results do not strongly support these

specifications.

Some of our empirical findings on the shape of the skewness NIC are consistent with

and can be explained using the time-varying expected return hypothesis of Pindyck

(1984), French et al. (1987) and Campbell & Hentschel (1992). However, some of the

newly discovered phenomena, such as the non-monotonicity of the skewness NIC, do not

seem to be easily explainable using off-the-shelf financial theories.

Although our main analysis is focused on stock indexes, we also use data on individual

stocks. The shape of the skewness NIC turns out to be heterogeneous across stocks as

well. Moreover, we explore the term structure of the skewness NIC and skewness itself.

We find that skewness of the S&P500 is negative on average and increases in absolute

value with the return horizon.

The article is organized as follows: in Section 2 we review the previously developed

approaches to modeling skewness and present the results of the semiparametric analysis,

which motivates the parametric models introduced in Section 3, which also contains

density forecasting and Monte-Carlo experiments. In Section 4, we discuss possible expla-

nations of empirical findings, and Section 5 concludes. The online Appendix available at

is.gd/skewnic contains auxiliary analyses (robustness of skewness NIC, skewness NIC

for individual stocks, term structure of skewness NIC) and technical details on direct

models for skewness.

2 A semiparametric look at skewness NIC

In this Section, we describe setups that analyze the dynamics of skewness, and present

the framework within which we extract the form of the skewness NIC in a semiparametric

fashion. Our interest is in seeing what shape the skewness NIC may take and reconcile
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this shape with parametric forms encountered in the previous literature. This will also

be useful in our further parametric analysis.

Let {rt} be a series of returns. The Hansen (1994) ARCD framework starts from the

following representation:

rt = µt + εt = µt + σtzt, (1)

where µt = E[rt|It−1], σ2
t = E[(rt − µt)

2|It−1], and It is information available at time

t. The conditional mean µt is typically a constant, a simple linear autoregression or

seasonal dummies. The conditional variance σ2
t , a proxy for volatility, is assumed to

follow some GARCH dynamics. The standardized return zt has zero mean, unit variance

and distributed with a density that allows nonzero skewness. Sometimes researchers

assume distributions for εt that have a nonzero mean; then the conditional expectation

is not µt (e.g., Harvey & Siddique, 1999).

2.1 Existing setups for modeling skewness dynamics

There are two approaches to modeling the dynamics of skewness in this framework. In the

direct approach, the evolution of skewness is defined by an explicit equation for skewness,

say st. This approach was proposed by Harvey & Siddique (1999). The authors consider

the noncentral t distribution for standardized returns and, using an analogy with the

GARCH model for volatility, develop the autoregressive conditional skewness model. In

this model the conditional skewness st follows the process

st = κ0 + κ−1st−1 + κ1ε
3
t−1. (2)

This approach was followed by León et al. (2005). The authors utilize a modification

of the Gram–Charlier density for standardized returns and extend the model of Harvey
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& Siddique (1999) by adding autoregressive dynamics for the conditional kurtosis kt:

st = κ0 + κ−1st−1 + κ1z
3
t−1, (3)

kt = δ0 + δ−1kt−1 + δ1z
4
t−1. (4)

White et al. (2010) also consider this model and compare it with their multi-quantile

CAViaR model of time-varying skewness and kurtosis.

The direct approach would be very attractive if not for a couple of major complications

that make it rarely used in the literature.2 First, there are few distributions that have

skewness and kurtosis as parameters; usually these depend on deep parameters through a

complex nonlinear mapping. This complicates the maximum likelihood procedure as one

needs to invert this mapping for each observation at each iteration. Second, there exists a

theoretical bound, within which all possible values of the skewness-kurtosis combination

must lie (Jondeau & Rockinger, 2003), while the dynamics specified in (2), (3) and (4) do

not restrict values of skewness and kurtosis. Harvey & Siddique (1999) perform repeated

inversions of the mapping but ignore the second complication, which may lead to the non-

invertibility of the mapping for some observations. In addition, in the Harvey & Siddique

(1999) model the conditional skewness is closely tied to the conditional mean specification

(see Appendix B). León et al. (2005) utilize the Gram–Charlier distribution, which has

skewness st and kurtosis kt as parameters. However, to overcome the boundedness

problem, they modify the density so that it becomes defined for any pair of st and

kt,
3 which compromises the idea of the direct approach because these parameters are

no longer skewness and kurtosis with respect to the modified density. Regarding the

dynamic equations (2)–(3), the embedded skewness NICs are weakly motivated (solely

by analogy with GARCH dynamics) and exhibit dubious highly curved shapes. Below,

2To our knowledge, Harvey & Siddique (1999) and León et al. (2005) are the only papers that propose
models for the dynamics of conditional skewness utilizing the direct approach; aside from these, Brooks
et al. (2005) use the direct approach to model conditional kurtosis.

3The formula defining the Gram–Charlier density can yield negative values when values of st and kt
that are outside of the bounds are used. A detailed description of the Gram–Charlier density and its
modification can be found in Appendices A and B.
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we also implement the models of Harvey & Siddique (1999) and León et al. (2005) and

compare the results to those arising in our setup.

The more popular indirect approach to modeling conditional skewness is to utilize a

flexible distribution with a parameter reflecting asymmetry. Typically, such a parameter

has to lie between certain levels; if so, it is replaced, via some transformation, with an

unrestricted one whose dynamics are modeled instead.

Jondeau & Rockinger (2003) is one of the first papers to use this approach to inves-

tigate the dynamics of conditional skewness and kurtosis. The authors use the Hansen

(1994) Skewed-t distribution, which has two parameters: asymmetry, say λ, and degrees

of freedom, say η. They consider different parametric specifications for the dynamics of

λt and ηt, some of which are frequently used in the subsequent literature. Hashmi &

Tay (2007) extend one of these specifications to explore spillover effects on several Asian

stock markets. Bali & Theodossiou (2008) utilize one of the specifications proposed by

Jondeau & Rockinger (2003) to model conditional value at risk.

Feunou et al. (2014) take this approach to modeling the dynamics of parameters of

the SGE, Skewed-t and Skewed Binormal distributions, and find that SGE shows the best

performance. Brännäs & Nordman (2003) model the dynamics of conditional skewness

through parameters of the Log Generalized Gamma (LGG) and Pearson type IV (PIV)

distributions. The LGG distribution has one parameter associated with skewness. The

PIV distribution has two parameters, one of which is closely tied to skewness. However,

the authors find that time-varying skewness in the PIV model does not yield significant

enhancement compared to the model with a constant asymmetry parameter. Yan (2005)

and Grigoletto & Lisi (2009) also exploit the PIV distribution and find strong evidence

of time-varying conditional skewness in stock index returns.

We would like to mark out two models considered in the ‘indirect approach’ literature

that are special cases in our analysis. In both, the time varying asymmetry parameter λt
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is replaced by λ̃t via the following logistic transformation:

λt = −1 +
2

1 + exp(−λ̃t)
. (5)

The first model is considered in Feunou et al. (2014), where standardized returns

follow the SGE distribution with two parameters. The one that reflects tail thickness is

kept constant; the other one reflects time varying asymmetry:

λ̃t = κ0 + κ−1λ̃t−1 + κ0,+z
+
t−1 + κ0,−z

−
t−1, (6)

where x− = min(0, x), x+ = max(0, x). Among the models considered in the present

paper, this model is also included as a special case.

The second model is considered in Jondeau & Rockinger (2003) where the standardized

returns are Skewed-t distributed. This distribution also has two parameters: the one

reflecting tail thickness is kept constant, and the asymmetry parameter is time varying:

λ̃t = κ0 + κ−1λ̃t−1 + κ1εt−1. (7)

The literature suggests two choices for the driving process in the equations for pa-

rameters like (6) or (7). The first is standardized return zt and its lags (e.g., Feunou

et al., 2014). Another choice is gross return innovation εt = σtzt and its lags (e.g.,

Jondeau & Rockinger, 2003). We stick to the former choice, because it is a distribution

of standardized returns whose skewness is modeled; in addition, all these measures are

unitless unlike the gross returns. Now we turn to the description of our model.

2.2 Specification of parametric part

Within the ARCD framework (1) we specify parametric forms for the conditional mean,

conditional variance and (shape of) conditional density, while leaving the conditional

skewness part incompletely specified. Below, in Section 3, while doing full parametric
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analysis, we check for the robustness of the skewness equation to pertubations of func-

tional forms for conditional mean, variance, and density.

The conditional mean is set constant; the conditional variance is assumed to follow

exponential GARCH (EGARCH) introduced in Nelson (1991):

log σ2
t = β0 + β−1 log σ2

t−1 + β1zt−1 + β|1||zt−1|.

This is one of the most preferable conditional variance models among asymmetric GARCH

in terms of flexibility of dynamics (Rodŕıguez & Ruiz, 2012) and is empirically one of the

most frequently selected for stock market data (Cappiello et al., 2006).

We utilize the Skewed Generalized Error distribution for the standardized residuals.

Depending on parameter values, it may exhibit either fat or thin tails and nonzero

skewness. It is widely used in the empirical finance literature: Anatolyev & Shakin (2007)

use it to model intertrade durations in stock exchanges; Bali & Theodossiou (2008) apply

this distribution to model value at risk; Feunou et al. (2014) compare this model with

those based on the Skewed-t distribution of Hansen (1994) and Binormal distribution of

Feunou et al. (2013) and find that the SGE-based model performs best.

Following the notation of Feunou et al. (2014), one can write the SGE density as

f(z, λ, η) = C exp

(
− |z +m|η

(1 + sgn(z +m)λ)ηθη

)
, (8)

C =
η

2θ
Γ

(
1

η

)−1
, θ = Γ

(
1

η

)1/2

Γ

(
3

η

)−1/2
S(λ)−1, m = 2λAS(λ)−1,

S(λ) =
√

1 + 3λ2 − 4A2λ2, A = Γ

(
2

η

)
Γ

(
1

η

)−1/2
Γ

(
3

η

)−1/2
,

where Γ(·) is the Gamma function; η and λ are parameters of the distribution, which are

subject to restrictions η > 0, −1 < λ < 1. Parameters η and λ control tail thickness

and asymmetry respectively. Figure 1 graphs the SGE density for different values of

parameters. When λ = 0, the distribution is symmetric, when λ > 0, it is skewed to the

9



right, and when λ < 0, it is skewed to the left. When λ = 0 and η = 2, it coincides with

the standard normal distribution. The skewness and kurtosis for this distribution can be

expressed in terms of parameters λ and η as

Sk = A3 − 3m−m3, Ku = A4 − 4A3m+ 6m2 + 3m4, (9)

where A3 = 4λ(1 +λ2)Γ (4/η) Γ (1/η)−1 θ3 and A4 = (1 + 10λ2 + 5λ4)Γ (5/η) Γ (1/η)−1 θ4.

The left panel of Figure 2 depicts the dependence of skewness on parameter λ for

different values of η. For reasonable values of η, skewness is an increasing function of λ,

hence it is convenient to model skewness dynamics through time-varying parameter λ.

2.3 Skewness dynamics

Now we describe the semiparametric specification of skewness dynamics. While we do

it for the case when the returns follow the SGE distribution, this specification can be

easily adapted for another asymmetric distribution with a scalar asymmetry parameter

(see Appendix A).

The skewness for the SGE distribution is determined by the parameters η and λ

that are responsible for asymmetry and tail heaviness. For moderate values of η the

skewness monotonically and strongly depends on the asymmetry parameter λ, while the

dependence on η is much weaker (see Figure 2). Therefore, we model the skewness

dynamics through the dynamics of λ only.4

The parameter λ is specified as a function of past standardized returns through the

logistic transformation (5), where λ̃t is a function of zt−1, zt−2, . . . . The transformation

ensures that λt lies in the interval (−1, 1). The right panel of Figure 2 depicts the

mapping from parameter λ̃ to the skewness measure for the SGE distribution for a range

of typical values of λ̃. One can see that not only is skewness its increasing function, but

also this function is quite close to a linear one. Thus, modeling λ̃ in an additive fashion

4We leave it for future research to allow the parameter η to evolve dynamically in order to model the
dynamics of both conditional skewness and conditional kurtosis.
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is (almost directly) modeling skewness in an additive fashion.

To model the function λ̃(zt−1, zt−2, . . . ) we exploit the partially nonparametric tech-

nique used in Engle & Ng (1993) to estimate the impact of news on volatility. Apart from

a constant, there are two additive terms in this specification: one is an (autoregressive)

persistence term, and the other represents the skewness NIC. The inclusion of the persis-

tence term is justified by the evidence of skewness clustering for stock indexes presented in

Jondeau & Rockinger (2003). We expect persistence of skewness to be positive although

moderate or even weak compared to persistence of volatility, which is typically very high.

Indeed, Jondeau & Rockinger (2003) and Feunou et al. (2014) find that the persistence

parameter lies in the range 0.4–0.8.

The skewness NIC, i.e. dependence on zt−1, is modeled by a piecewise linear function

in a way similar to Engle & Ng (1993). Let m+, m− be some nonnegative integers;

{τi}m+

i=−m−
be a set of real numbers satisfying τ−m− < τ(−m−+1) < · · · < τ(m+−1) < τm+ .

Define the dynamics of λ̃t by

λ̃t = κ0 + κ−1λ̃t−1 + ψ(zt−1), (10)

where the skewness NIC function is

ψ(z) =

m+∑
i=0

κi,+(z − τi)+ +

m−∑
i=0

κi,−(z − τ−i)−, (11)

and κ0, κ−1, κi,+ (i = 0, 1, . . . ,m+), κi,− (i = 0, 1, . . . ,m−) are parameters to

be estimated; x+ = max(0, x), x− = min(0, x). When m+ = m− = 0, τ0 = 0 this

specification coincides with (6). For fixed λ̃t−1 the functional form (11) defines λ̃t as a

continuous piecewise linear function of zt−1. For zt−1 ∈ (τ0, τ1] this function has slope

κ0,+; for zt−1 ∈ (τ1, τ2] this function has slope (κ0,+ + κ1,+); for zt−1 ∈ (τi, τi+1] (i ≥ 0)

this function has slope
∑i

j=0 κj,+; for zt−1 ∈ (τ−(i+1), τ−i] (i ≥ 0) this function has slope∑i
j=0 κj,−.

The parameters m+, m−, {τi}m+

i=−m−
are usually chosen by a researcher, although
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some automated algorithms can be used. Higher values of m+ and m− provide higher

flexibility for the model, but at the same time this may lead to less precise parameter

estimation. In the case of volatility modeling, Engle & Ng (1993) propose two simple

methods for choosing {τi}m+

i=−m−
. The first method is to assign the values of τi based

on the order statistics of the explanatory variable. The second is to take τi = i · σ for

i ∈ {−m−, −(m−− 1), . . . , m+}, where σ is the unconditional standard deviation of the

explaining variable. The first method is somewhat problematic in the case of modeling

conditional skewness because the standardized returns zt are unobservable, and thus the

order statistics of zt are unavailable; hence, we use the second approach. As zt’s have a

standard deviation equal to one, we take τi = i for i ∈ {−m−, −(m− − 1), . . . , m+}.

2.4 Data

Our analysis is focused on stock indexes for the following reason: our estimation sample

covers a few decades, during which different factors within a particular company may

have changed. Such factors may influence stock return behavior and may not be captured

by the model. For example, over the course of two decades, significant changes in the

company’s capital structure may happen. Aggregate indexes smooth out such changes,

and it is more likely that such samples will reveal time-varying skewness in indexes than

in individual stocks.

In this Section, we use a few decades of daily logarithmic total returns on the S&P500

and FTSE100 downloaded from finance.yahoo.com. Log returns are calculated as rt =

100 log(Pt/Pt−1), where Pt is an index close price at date t adjusted for dividends and

splits. The first two columns of Table 1 present time coverage and summary statistics.

The series start on different dates, but both end on the last trading day of 2010. Both

series have negative sample skewness and very large excess kurtosis, demonstrating two

established stylized facts related to higher order moments – stock returns tend to have,

in unconditional terms, negative skewness and positive excess kurtosis (see, for example

Harvey & Siddique, 1999; Peiro, 1999; Premaratne & Bera, 2000). The top two panels
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of Figure 3 show the graphs of dynamics of log returns. Both series exhibit volatility

clustering and have points that lie very far from typical values.

2.5 Results

Figure 4 presents graphs of the skewness NIC for three semiparametric specifications

with zero, one and three knots, conditional on average λ̃t−1, for S&P500 (left side) and

FTSE100 (right side). Note that the first two are equivalent to a linear and asymmetric

linear NIC corresponding to constrained and unconstrained skewness dynamics from

Feunou et al. (2014), shown in equation (6), while the last one is more flexible.5

It can be seen from the top panels that skewness is positively related to past returns,

but the relation for S&P500 is twice as steep as that for FTSE100. When we allow

for asymmetric response to negative and positive shocks, we find that the responses

are indeed different, but only slightly. In the case of the S&P500, the NIC estimate is

practically indistinguishable from a straight line, and the kink at the only zero knot is

hardly noticeable; the results are similar to Feunou et al. (2014), where the authors obtain

significant positive coefficient estimates of a similar magnitude for κ0,− and κ0,+. In the

case of the FTSE100, the kink is more pronounced. However, when more flexibility

is allowed, the skewness NIC dramatically differs from that estimated with the ‘one

knot’ model, which fails to capture the nonlinearity, and more concretely, the sharp non-

monotonicity of the reaction of skewness to news.6 Note that at the same time, the kink

at zero becomes even less noticeable.

So, the semiparametric estimates bring about a possibility of non-monotonic skew-

ness NIC, particularly negative dependence for bigger standardized returns, especially

pronounced for S&P500. This evidence – the abrupt nonlinearity and, especially, non-

5We also computed semiparametric estimates with five knots; the results are qualitatively similar to
the case of three knots.

6For the S&P500, the deviation of the non-monotonic (i.e. with three knots) skewness NIC from
linear (no knots) and asymmetric linear (one knot) forms is highly statistically significant: the likelihood
ratio statistics (p-values) are equal to 14.6 (0.002) and 12.9 (0.002) respectively. For the FTSE100, the
corresponding values are 8.9 (0.031) and 3.9 (0.140).
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monotonicity of the skewness NIC – suggests that the previous literature has underesti-

mated the complexity of its shape. We devote the next Section to the development of

parametric specifications that would be consistent with the above evidence and allow for

richer possibilities than the previous literature has assumed.

3 Parametric analysis of skewness NIC

In this Section, we leave the conditional mean, variance and density specifications as

before, only transforming the semiparametric equation for the skewness into a series of

parametric specifications of different degrees of flexibility.

3.1 Skewness dynamics

Again, the standardized return zt is distributed, conditional on the history It−1, as SGE

with constant η and parameter λ̃t following (10), with the skewness NIC ψ(z) driving the

skewness equation. We consider the following parametric specifications of ψ(z):

0. Constant specification: κ−1 = 0, ψ(z) = 0 so that λ̃t = κ0.

1. Linear specification:

ψ1(z) = κ1z.

2. Asymmetric linear specification:

ψ2(z) = κ2−zI{z<0} + κ2+zI{z>0},

where κ2− 6= κ2+.

3. Transition specification:

ψ3(z) = κ3 (1 + νλ|z|) z.

If νλ < 0, the transition is able to generate non-monotonic NIC.
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4. Flexible specification:

ψ4(z) = κ4 (1 + νλ|z|) sgn(z)|z|ζλ ,

where ζλ ≥ 0. This adds more curvature to the ‘transition’ specification.

5. Partially asymmetric transition specification:

ψ5(z) = κ5− (1 + νλ|z|) zI{z<0} + κ5+ (1 + νλ|z|) zI{z>0},

where κ5− 6= κ5+. This relaxes both the ‘asymmetric linear’ and ‘transition’ specifications.

For reference, we also estimate the following cubic specification:

ψ∼z3(z) = κ∼z3z
3.

While the ‘constant’ specification ‘0’ sets the skewness to be time-invariant, the ‘linear’

specification ‘1’ and ‘cubic’ specification ‘∼ z3’ with their GARCH-like dynamics can

be found in the previous literature, and so can the ‘asymmetric linear’ specification ‘2’

that allows the impact to be different for positive and negative past returns, cf. (6).

More complex shapes of the skewness NIC are designed to capture its possible non-

monotonicity, with varying degree of flexibility, that was detected by our semiparametric

analysis (see Section 2). The ‘transition’ specification ‘3’ posits that the coefficient of a

linear relationship depends on the size of the standardized return, making the skewness

NIC, if νλ 6= 0, nonlinear, and, if κ3 > 0 and νλ < 0, non-monotone as well. The

‘flexible’ specification ‘4’ makes the relationship even more curved, even if νλ = 0, while

the ‘partially asymmetric transition’ specification ‘5’ allows the impact coefficient to be

different for positive and negative past returns. We have also tried a ‘fully asymmetric

transition’ specification where the parameter νλ differs for positive and negative returns,

but no improvement in terms of AIC was reached for any of the indexes we analyzed

compared to the ‘partially asymmetric transition’ specification ‘5’.
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3.2 Data

In this Section, in addition to data on S&P500 and FTSE100, we use daily log returns

on three other stock indexes – NIKKEI225, DAX and CAC40. These data were also

downloaded from finance.yahoo.com and start on different dates but end on the last

trading day of 2010. The rest of Table 1 and Figure 3 confirm the typical properties of

stock returns, though the unconditional skewness and kurtosis features for these indexes

are milder than those for S&P500 and FTSE100. For out-of-sample tests, we use the

data on S&P500 returns spanning from 01/01/2011 to 01/31/2016.

3.3 Results for S&P500

Table 2 displays estimation results for the S&P500 returns. In addition to those from the

SGE distribution with various skewness specifications, results from a conditionally normal

model are also given (column ‘N’). The table shows, in addition to point estimates and

robust standard errors,7 the rankings by the Akaike and Bayesian information criteria,

as well as the likelihood ratio tests LR0|j based on comparison of a dynamic skewness

model ‘j’ and the model with constant skewness (‘constant’ specification ‘0’).

The variance coefficients are stable across different models for skewness, with large

persistence and a pronounced leverage effect. The ‘thickness-of-tails’ coefficient is also

consistent throughout all SGE models. The sign of average skewness is stably negative.

The persistence coefficient is moderately large in all dynamic skewness models except

the ‘∼z3’ specification where it is negative and big in absolute value though statistically

insignificant. The ‘∼ z3’ specification, although is a bit better by likelihood, is not

statistically different from the ‘constant’ skewness specification ‘0’; evidently, the cubic

form is too steep for the actual NIC. The LR test for all other dynamic skewness

specifications yields highly statistically significant differences. Most preferable by the

value of likelihood is the ‘flexible’ specification ‘4’, but the additional power parameter

7These standard errors are robust to density misspecification if the conditional density belongs to
the exponential family; they are also valid with other conditional densities under the correct density
specification.
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is not significantly different from unity. Both information criteria deem this flexibility

not worth an increase in likelihood, just as they do regarding additional asymmetry. The

‘transition’ specification ‘3’ is considered an optimal degree of parsimony by both AIC

and BIC. In Appendix A, we present the effects of perturbations of conditional mean,

variance, density and other specifications on the shape of the ‘transition’ skewness NIC,

which prove that this shape is highly robust to such perturbations.

Note that the ‘average’ slope of the impact of a standardized return on future skewness

is positive and is slightly smaller for negative returns than for positive returns (specifica-

tion ‘2’). When the non-monotonicity effect is taken into account (specification ‘5’), this

difference is tiny and statistically insignificant (LR0|5−LR0|3 ≈ 0.0). The skewness NIC is

indeed non-monotone, as the parameter νλ is negative and large in absolute value. Figure

5 depicts the skewness NIC for the five dynamic specifications ‘1’–‘5’. One can see that the

linear and piecewise linear specifications provide but crude approximation of the skewness

NIC which is sharply different for smaller and larger shocks, while the other specifications

imply very similar non-monotonic shapes. Note that about 72% of standardized returns

do not exceed 1.0 in absolute value, for which the skewness NIC is approximately linear

though steeper than the linear or asymmetric linear approximations. The slope becomes

negative for standardized returns larger than about 2.5. This corresponds to 1.8% of the

sample or about 140 observations, i.e. it is not the case that only a few outliers drive

the result. Note that BIC is too conservative in the sense that its second-best choice is

the asymmetric linear specification, which misses the phenomenon of non-monotonicity,

while AIC prefers specifications with non-monotonicity to the asymmetric linear one.

In all specifications (except the ‘cubic’ one) the persistence coefficient κ−1 is close to

0.6 and is highly statistically significant. This is an evidence of moderate persistence

in conditional skewness, compared to that in GARCH models for volatility. Jondeau &

Rockinger (2003) also find that the conditional skewness of the S&P500 exhibits relatively

high persistence; Feunou et al. (2014) obtain estimates for such coefficients close to 0.6

for the S&P500 for three subsamples that cover various periods from 1980 to 2009.
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Importantly, not only is the persistence much lower for skewness than for volatility,

but also the whole skewness NIC is much harder to identify from a long series of observable

returns than it is to pin down the volatility NIC from much shorter periods.

Figure 6 presents the 4-year fragments of the series of returns of the S&P500, the

conditional variance from the EGARCH model and the conditional skewness computed

using the ‘transition’ specification and formula (9). Returns and volatilities exhibit

familiar patterns; the skewness series is less persistent than volatility. It does not appear

that volatility and skewness are related; indeed, the correlation between them is only

−0.047.

3.4 Conditional density forecasting

An important dimension that helps compare different models of skewness dynamics from

a practical viewpoint is conditional density forecasting. To evaluate the models from this

perspective, we use the test proposed by Diebold & Mariano (1995) and extended by

Amisano & Giacomini (2007). To extend the analysis to multiperiod forecasts, we follow

the methodology proposed by Maheu & McCurdy (2011). The method is described in

detail in Maheu & McCurdy (2011), so here we just summarize the main points and

present the results. The test statistic comparing models i and j is

τi,j =

√
T (Di −Dj)

σ̂i,j
,

where

Di =
1

T

t0+T∑
t=t0

log fi,k(rt+k|It),

the return density fi,k(rt+k|It) is implied by model i in period t + k conditional on

information available in period t and evaluated at the realized return rt+k, and σ̂i,j

is a HAC estimator of the long run standard deviation of the log density differential.

Under the null hypothesis that models i and j have equal predictive properties, τi,j is

asymptotically standard normal. A large positive value of τi,j is evidence of model i’s
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better performance, a negative one, of model j’s.

We compute the statistic τj,0, j ∈ {1, 2, 3} for forecast horizons of k = 1, ..., 60 days for

both in-sample (01/02/1980–12/31/2010) and out-of-sample (01/01/2011–01/31/2016)

periods for S&P500. Figure 7 shows plots of statistics τ1,0, τ2,0 and τ3,0 as functions of

k. In-sample, there is strong evidence in favor of time-varying skewness. ‘Linear’ and

‘asymmetric linear’ specifications significantly outperform static specification ‘0’ in short

and long run horizons. ‘Transition’ specification shows the best in-sample performance:

it is significantly better than the static specification in almost all forecasting horizons

considered. Out-of-sample, ‘linear’ and ‘asymmetric linear’ specifications seem to fare

best overall, though the differences tend to be statistically insignificant. In out-of-sample

density forecasting, dynamic structures of skewness specification show more advantage

for short and long horizons and less for medium horizons; at the same time, simpler

models of dynamic skewness seem to perform better. These results are in line with the

common wisdom that higher model sophistication, though leading to a better performance

in-sample, may not show an advantage out-of-sample.

3.5 Results of direct models for skewness

In addition to models within our ‘indirect’ framework, we estimate two existing ‘direct’

models for dynamic skewness for the S&P500. The models of León et al. (2005) and

Harvey & Siddique (1999) are described in detail in Appendix B. Table 3 contains

skewness equations, estimates of their parameters with corresponding standard errors,

and LR test statistics for the constancy of conditional skewness with corresponding p-

values.

On top of these models’ practical shortcomings discussed in subsection 2.1, empirically,

the parameters of skewness dynamics κ−1 and κ1 are small compared to those in Table

2 and, statistically, tend to be marginally significant at most. The LR tests show

statistically insignificant deviations from static conditional skewness.
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3.6 Results for other indexes

We also apply our parametric model with various skewness specifications to four major

European indexes: FTSE100, NIKKEI225, DAX and CAC40. The purpose is to verify

whether the shape of the skewness NIC in other liquid markets differs from that for

S&P500.

The Monte Carlo analysis (see the next subsection) reveals that AIC may be more

precise relative to BIC in choosing the correct specification. Table 4 reports estimates

for AIC-selected specifications for the four indexes, and Figure 8 depicts the skewness

NIC for all five. While the volatility estimates do not fall far apart, one observes wide

diversity in estimates of skewness NIC across the markets. The skewness NIC for DAX

is qualitatively similar to that for S&P500, but bigger returns cause a sharper reaction of

skewness. Non-monotonicity is not found important while asymmetry is for FTSE100 (cf.

Figure 4) and CAC40, and, as in the case of S&P500 (‘asymmetric linear’ specification),

positive returns exert higher impact on skewness than negative returns. Finally, the

NIKKEI225 index exhibits a monotone, albeit peculiarly nonlinear, skewness NIC. The

persistence also varies significantly across the markets.

This evidence shows that while the volatility characteristics are quite similar in

different stock markets, the skewness equation exhibits high variability across them.

3.7 Monte Carlo study

To confirm the reliability of the obtained results we conduct a small Monte Carlo study.

We investigate the performance of the parameter estimates of the preferred skewness

specification, rejection rates of the likelihood ratio test for its staticness, and frequencies

of selection of particular specifications by the two information criteria.

In the first experiment, we simulate 500 artificial samples of length 7,500 (roughly

corresponding to sample sizes used in our real data analysis) from the EGARCH-SGED

model with dynamic ‘transition’ skewness specification ‘3’ and parameters close to those
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obtained for S&P 500. Summary statistics of the estimates of skewness dynamics and

shape parameters are reported in Table 5. All parameter estimates are nearly mean and

median unbiased. Especially precise are estimates of the thickness-of-tails parameter,

but the interquartile ranges of the skewness parameters are narrow enough to ensure the

estimated ‘rotated S’-shape of the skewness NIC if it is present in the data. Standard

deviations of estimates for most of the parameters are close to standard errors of estimates

obtained from the empirical analysis. Note that the excellent properties of estimates of

the conditional skewness NIC are in sharp contrast to the poor precision of estimates of

the unconditional skewness measures reported in Kim & White (2004).

Next, in Table 6 we present the results of LR testing of the null hypothesis of ‘constant’

skewness against its ‘transition’ dynamics. In the upper panel, we simulate the series from

specification ‘0’, in the lower panel, from specification ‘3’. There is moderate overrejection

under the null hypothesis of constant skewness: the test rejects about twice as often as

the nominal asymptotic size implies.8 When instead the dynamic skewness specification

drives the data, the LR test exhibits unit power for all significance levels.

Finally, Table 7 presents the results of model selection experimentation. We gener-

ate samples from the EGARCH-SGED model with static and three dynamic skewness

specifications and count model selection scores using AIC and BIC. A number in the ith

row and jth column represents the percentage of samples when specification ‘i’ is selected

according to AIC/BIC with the data generated from the model with specification ‘j’.

As expected, BIC selects more parsimonious specifications compared to AIC. Perhaps

less expected, BIC almost never selects a specification that is more parameterized than

the DGP, in a sense providing a ‘lower bound’ for the true model parsimony. However,

most of the time, BIC prefers a linear model for skewness, and neglects the nonlinearity

of the skewness specification when in fact it is present. Therefore, AIC seems to be a

more suitable selection criterion in this context, even though moderately often it selects

relatively simple dynamic specification when it is in fact static. When the ‘transition’

8If we use size-corrected critical values for the LR0|3 statistic in our empirical analysis, the null of
constant skewness is still rejected at conventional significance levels.
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specification ‘3’ is in effect, AIC is right on target in three out of four cases.

All in all, the Monte Carlo evidence indicates that the empirical results regarding the

shape of the skewness NIC obtained before appear genuine.

4 Discussion

Our empirical study has revealed several intriguing patterns observed in the distribution

of stock market returns. First, for almost all indexes considered, the skewness NIC has

a positive slope for moderate values of past standardized returns. Second, the skewness

NIC of S&P500 and DAX are clearly non-monotone: for moderate values of standardized

return, the slope of the NIC is positive, but for returns that are large in absolute value,

it is negative, and this pattern is robust to specifications of volatility dynamics, density

shape, exclusion of extreme events and other perturbations.

The first phenomenon may be explained by the existence of time-varying expected

returns. Pindyck (1984), French et al. (1987), and Campbell & Hentschel (1992) use the

hypothesis of time-varying expected return to study the relation between stock returns

and volatility. Particularly, the ‘volatility feedback’ effect established in this literature

explains the asymmetry of the volatility NIC: an increase in future expected return

volatility leads to an increase in the expected return and, consequently, to a price drop

and negative return in the current period; a decrease in future volatility leads to a decrease

in the expected return and a price increase in the current period. Along these lines, one

can explain the positive slope of the skewness NIC for moderate values of standardized

returns.

Kraus & Litzenberger (1976) and Harvey & Siddique (2000) provide theoretical justi-

fication and empirical evidence that systemic skewness is priced in the stock market.

Particularly, they find that investors prefer positively skewed returns and ask for a

positive risk premium for negative return skewness in the stock market. It then follows

that a positive shock to expected future skewness should reduce the risk premium and
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consequently lead to a price increase and positive return in the current period. A negative

shock to the expected future skewness, on the contrary, will lead to a price drop and

negative return. This explains the positive slope of the skewness NIC of stock indexes.

The second empirical phenomenon, non-monotonicity of the skewness NIC for S&P500

and DAX, is inconsistent with the time-varying risk premium hypothesis and is harder to

explain. This means there might be other factors that connect skewness and returns, that

overpower the ‘skewness feedback’ effect when returns are large in absolute value. To the

best of our knowledge, this paper is the first to find this pattern and there is no off-the-

shelf theory that can explain it. Intuitively, one can think about this effect in the following

way. A large positive return is followed by a lower skewness in subsequent periods, which

means that the probability of large negative returns becomes higher. A large negative

return, in contrast, is followed with a higher skewness and higher probability of large

positive returns. These informal observations are reminiscent of the market overreaction

and market rebound phenomena and can give some hints about possible explanations of

the pattern; however a rigorous theory that could explain these observations is yet to be

developed. Another important question in this regard is why this effect is observed for

some and not for other indexes. We leave these questions to future research.

Our empirical findings are also interesting from a practical point of view. Skewness

is a characteristic that largely determines the probability distribution of tail events. Our

results suggest that the probability of tail events is time-varying and predictable. Better

models for conditional skewness thus provide more precise estimation and control of tail

risks, which is crucial in dynamic asset allocation.

5 Concluding remarks

Studying the distributional asymmetry of financial returns may take different approaches:

Feunou et al. (2013) work with an asymmetry measure based on the difference between

upside and downside realized volatilities; Ghysels et al. (2015) analyze asymmetry using
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robust skewness measures that are computed from quantiles. We take a conventional

route and model the whole conditional return distribution, including the evolution of

conditional skewness, with an eye to the skewness NIC. This approach allows one not

only to quantify the degree of asymmetry and analyze how it evolves over time but

also study the link between current news and future asymmetry. Because our approach

involves full parametric specification of the conditional distribution, the results can be

straightforwardly used in problems of asset allocation, risk management and option

pricing.

We have discovered that even though the skewness equation is much more difficult to

identify from return data, the skewness is negative on average, it has a moderate degree

of persistence, and its NIC tends to exhibit positive slope, (sometimes) sign asymmetry,

(sometimes) non-monotonicity and high diversity across different returns. While there is

a broad literature that emphasizes the importance of time-varying skewness and a slim

literature on modeling the skewness NIC, there is little research that would provide a

theoretical ground for the findings. While we are able to explain some of those, more

research is needed to explain the newly discovered phenomena on the theory level.
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Tables and Figures

Table 1: Summary statistics for log returns series

S&P500 FTSE100 NIKKEI225 DAX CAC40

Start 01/02/80 01/02/85 01/02/85 11/26/90 03/01/90
Length 7822 6570 6388 5079 5269

Mean 0.031 0.023 −0.002 0.031 0.014
Median 0.054 0.013 0.028 0.079 0.033
Min −22.900 −13.029 −16.137 −9.871 −9.472
Max 10.957 9.384 13.235 10.797 10.595
Standard deviation 1.148 1.117 1.487 1.457 1.419
Skewness −1.214 −0.520 −0.213 −0.091 −0.012
Kurtosis 31.012 13.627 11.045 7.957 7.800

Notes: Log returns are defined as rt = 100 log(Pt/Pt−1), where Pt is close price at date t. Samples end
on December 30 or 31, 2010.
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Table 2: Estimation results for S&P500

S&P500

Model j → 0 1 2 3 4 5 ∼ z3 N

variance equation

β−1 0.986
(0.001)

0.987
(0.003)

0.987
(0.004)

0.988
(0.003)

0.988
(0.002)

0.988
(0.003)

0.986
(0.003)

0.983
(0.004)

β1 −0.075
(0.008)

−0.078
(0.010)

−0.077
(0.019)

−0.074
(0.010)

−0.074
(0.006)

−0.074
(0.009)

−0.076
(0.010)

−0.083
(0.017)

β|1| 0.119
(0.010)

0.123
(0.013)

0.122
(0.013)

0.117
(0.012)

0.118
(0.009)

0.117
(0.012)

0.120
(0.013)

0.131
(0.023)

skewness equation

κ0 −0.138
(0.027)

−0.051
(0.020)

−0.078
(0.025)

−0.050
(0.016)

−0.051
(0.015)

−0.051
(0.054)

−0.179
(0.066)

κ−1 0.582
(0.113)

0.579
(0.080)

0.606
(0.088)

0.599
(0.083)

0.607
(0.084)

−0.313
(0.400)

κj,

(
κj−
κj+

)
0.120
(0.028)

(0.097
(0.036)

0.168
(0.026)

)
0.231
(0.042)

0.237
(0.043)

(0.220
(0.080)

0.235
(0.135)

)
0.001
(0.001)

νλ −0.212
(0.021)

−0.205
(0.056)

−0.213
(0.033)

ζλ 0.851
(0.221)

shape parameter

η 1.36
(0.04)

1.36
(0.04)

1.36
(0.04)

1.35
(0.04)

1.35
(0.03)

1.36
(0.04)

1.36
(0.04)

diagnostics

LR0|j
(p-value)

0 44.5
(0.000)

46.2
(0.000)

57.0
(0.000)

57.3
(0.000)

57.0
(0.000)

2.1
(0.144)

AIC 7 4 5 1 2 3 6 8
BIC 6 2 5 1 3 4 7 8

Notes: Robust standard errors are in parentheses. Row LR0|j shows loglikelihood ratio tests comparing
current specification ‘j’ with specification ‘0’. AIC and BIC are Akaike and Bayesian information criteria,
and corresponding numbers point at rankings of models. For model specifications, see main text.
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Table 3: Estimation results of direct models for S&P500

Source Skewness specification κ0 κ−1 κ1 LR0
(p-value)

Leon et al (2005) st = κ0 + κ−1st−1 + κ1z
3
t−1 −0.058

(0.017)
0.014
(0.153)

0.006
(0.003)

3.13
(0.209)

Harvey & Siddique (1999) st = κ0 + κ−1st−1 + κ1σ
3
t−1z

3
t−1 0.017

(0.000)
−0.088
(0.095)

0.040
(0.027)

4.53
(0.104)

Notes: Robust standard errors are in parentheses. Column LR0 shows loglikelihood ratio test comparing current
specification with analogous constant specification (the null κ−1 = κ1 = 0). Full model specifications are described
in Appendix B.
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Table 4: Estimation results for other indexes

FTSE100 NIKKEI225 DAX CAC40

Model j → 2 4 3 2

variance equation

β−1 0.985
(0.003)

0.977
(0.004)

0.984
(0.003)

0.983
(0.003)

β1 −0.067
(0.008)

−0.091
(0.012)

−0.071
(0.009)

−0.084
(0.009)

β|1| 0.150
(0.015)

0.179
(0.017)

0.134
(0.014)

0.119
(0.014)

skewness equation

κ0 −0.095
(0.030)

−0.067
(0.031)

−0.236
(0.057)

−0.347
(0.090)

κ−1 0.832
(0.071)

0.302
(0.172)

−0.158
(0.072)

−0.579
(0.268)

κ1(
κ2−
κ2+

) (0.011
(0.033)

0.163
(0.049)

) (−0.065
(0.047)

0.145
(0.059)

)
κ3 0.232

(0.073)

κ4 0.090
(0.062)(

κ5−
κ5+

)
νλ −0.104

(0.028)
−0.358
(0.046)

ζλ 1.161
(0.818)

shape parameter

η 1.69
(0.05)

1.44
(0.05)

1.46
(0.08)

1.62
(0.08)

LR0
(p-value)

33.2
(0.000)

34.2
(0.000)

11.4
(0.001)

8.5
(0.004)

Notes: Robust standard errors are in parentheses. Row LR0|j
shows loglikelihood ratio tests comparing current specification ‘j’ with
specification ‘0’. For model specifications, see main text.
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Table 5: Monte Carlo study: parameter estimates

κ0 κ−1 κ3 ν η

True value −0.050 0.610 0.230 −0.210 1.350
Mean −0.052 0.603 0.237 −0.206 1.350
Standard deviation 0.017 0.093 0.052 0.077 0.031
Q5% −0.080 0.453 0.153 −0.300 1.297
Q25% −0.061 0.546 0.203 −0.253 1.330
Q50% −0.050 0.610 0.240 −0.219 1.350
Q75% −0.040 0.666 0.273 −0.176 1.369
Q95% −0.028 0.741 0.322 −0.078 1.405

Notes: Simulations are based on 500 samples of length 7,500 drawn from EGARCH-SGED model with
dynamic skewness specification ‘3’. QX% denotes X-percentile of empirical distribution of estimates.

Table 6: Monte Carlo study: likelihood ratio test

Nominal size 1% 2.5% 5% 10%

Simulated data from model with ‘constant’ specification ‘0’

Rejection rate 2.6% 5.0% 11.0% 18.0%

Simulated data from model with ‘transition’ specification ‘3’

Rejection rate 100.0% 100.0% 100.0% 100.0%

Notes: Simulations are based on 500 samples of length 7,500 drawn from EGARCH-SGED model with
static (upper panel) and dynamic (lower panel) skewness specifications. Figures indicate rejection rates
by likelihood ratio test LR0|3. Critical values are obtained from chi-squared distribution with three
degrees of freedom.

Table 7: Monte Carlo study: model selection

DGP → 0 1 2 3 0 1 2 3

↓ Model AIC BIC

0 63% 0% 0% 0% 100% 4% 2% 0%
1 15% 72% 52% 18% 0% 95% 95% 75%
2 14% 12% 33% 6% 0% 1% 3% 0%
3 8% 16% 15% 76% 0% 0% 0% 24%

Notes: Simulations are based on 500 samples of length 7500 drawn from EGARCH-SGED model with
each of skewness specifications ‘0’, ‘1’, ‘2’ and ‘3’ with parameter values matching empirical estimates for
S&P 500. In ith row and jth column we report a percentage of samples when specification ‘i’ is selected
according to AIC or BIC with data generated from model with specification ‘j’.
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Figure 1: The SGE density for different values of λ and η
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Figure 2: Skewness of SGE distribution for different values of η as a function of λ and λ̃
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Figure 3: Dynamics of log returns
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Notes: Log returns are defined as rt = 100 log(Pt/Pt−1), where Pt is an index close price at date t
adjusted for dividends and splits.
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Figure 4: Semiparametric skewness NIC for S&P500 and FTSE100 with zero, one and
three knots
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Notes: Skewness NIC is inferred from semiparametric model for conditional skewness st for daily S&P500
log returns depending on standardized residual zt−1 conditional on average λ̃t−1. Top panels illustrate
a model with zero knots (linear NIC), middle panels – semiparametric model with 1 knot (asymmetric
linear model), bottom panels – semiparametric model with 3 knots.
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Figure 5: Parametric skewness NIC for S&P500 with five specifications
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Notes: Skewness NIC is inferred from parametric models for conditional skewness st for daily S&P500
log returns depending on standardized residual zt−1 conditional on average λ̃t−1.
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Figure 6: Returns, volatility and skewness
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Notes: Top panel shows fragment of series of daily S&P500 log returns, middle panel shows fragment of
series of conditional variance, bottom panel shows fragment of series of conditional skewness.

39



Figure 7: Conditional density forecasting
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Notes: Test statistics τi,j compare average predictive log densities of models i and j. They are shown
for daily S&P500 log returns as functions of forecast horizon k. Positive statistic for ‘i vs j’ is evidence
in favor of model i against model j. Dashed lines correspond to 5% significance levels.
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Figure 8: Parametric skewness NIC for five indexes
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Notes: Skewness NIC is inferred from parametric models for conditional skewness st for daily S&P500,
FTSE100, NIKKEI225, DAX and CAC40 log returns depending on standardized residual zt−1 conditional
on average λ̃t−1.
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