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A Robustness of skewness NIC for S&P500

Our analysis is parametric, and therefore the conclusions made may be prone to misspec-

ification of various functional forms. Therefore, to confirm that the shape of the obtained

skewness NIC is robust to various deviations in functional forms, we run a number of

robustness checks. These experiments can be divided into four groups: change in the

data span, change in specification of the mean equation, change in specification of the

variance equation, and change in specification of the density function. Table 1 shows

the estimates of the ‘transition’ specification of the skewness equation in each of these

experiments applied to the S&P500 index. The column ‘main’ replicates the estimates

from Table 2 from the main text.

Table 1: Results of robustness checks for S&P500 index

S&P500

variation → main 1990– +AR(1) +σ2
t -M (1,2)

κ0 −0.050
(0.016)

−0.077
(0.032)

−0.050
(0.134)

−0.048
(0.022)

−0.050
(0.016)

κ−1 0.606
(0.088)

0.551
(0.152)

0.571
(0.067)

0.607
(0.104)

0.592
(0.059)

κ3 0.231
(0.042)

0.284
(0.063)

0.273
(0.026)

0.236
(0.035)

0.251
(0.036)

νλ −0.212
(0.021)

−0.280
(0.099)

−0.206
(0.031)

−0.217
(0.012)

−0.218
(0.023)

variation → HGARCH CGARCH +Jumps Skew-t G–C

κ0 −0.049
(0.016)

−0.033
(0.017)

−0.032
(0.019)

−0.036
(0.014)

−0.109
(0.043)

κ−1 0.620
(0.079)

0.573
(0.079)

0.634
(0.100)

0.624
(0.077)

0.701
(0.068)

κ3 0.235
(0.047)

0.228
(0.049)

0.200
(0.039)

0.198
(0.038)

0.460
(0.131)

νλ −0.210
(0.027)

−0.199
(0.066)

−0.208
(0.029)

−0.206
(0.040)

−0.080
(0.066)

Notes: Robust standard errors are in parentheses. Model variation labels are decrypted
in text.

Our dataset includes the observation made on October 19, 1987, the day known as

‘Black Monday.’ On this day, the S&P500 index experienced the largest drop in history

during one trading day: it lost more than 20%. We check whether the exclusion of the

decade of the 80’s with its turbulent period in October 1987 alters the skewness NIC

estimates. The skewness parameters shown in the column ‘1990–’ of Table 1 change a

little, but the qualitative properties of the skewness NIC do not change. A more noticeable

change occurs in the standard errors (to a greater extent than the change in the sample

size implies), especially to that of νλ; evidently, the October 1987 extremal returns are

quite informative about this coefficient.
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Recall that our specification for the conditional mean is trivial, a constant. We

verify that accounting for possible (weak) serial correlation may change estimates of

the skewness NIC. We use two popular specifications: an additional autoregressive term

ρrt−1 and an additional GARCH-M term γσ2
t . The columns ‘+AR(1)’ and ‘+σ2

t -M’ in

Table 1 show that the skewness NIC parameters change very little as a result, with the

skewness NIC keeping its previous shape.

We also estimate the model with various perturbations of the volatility equation.

This is important because misspecification of conditional variance is likely to pass over

to the next conditional moment, i.e. conditional skewness. First we check whether

increasing the order of the EGARCH model by adding the standardized returns and

their absolute values lagged twice is able to dampen the shape of the skewness NIC. The

column ‘(1,2)’ indicates that it does not. Next, we replace the EGARCH process for

the conditional variance by alternative volatility specifications. A flexible specification of

Hentschel (1995) is

σ2θ
t = β0 + β−1σ

2θ
t−1 + β1σ

2θ
t−1(|zt−1 − b| − c(zt−1 − b))ζσ ,

where θ > 0, ζσ > 0. This specification allows many forms of leverage and includes

standard GARCH, EGARCH, GJR–GARCH, Threshold GARCH, Asymmetric Power

GARCH and others as special cases. Another GARCH model, Component GARCH

(Engle & Lee, 1999), models both short-run and long-run movements in volatility. The

short-run movements around the long-run component qt follow

σ2
t = qt + β−1(σ

2
t−1 − qt−1) + β1(σ

2
t−1z

2
t−1 − qt−1),

where qt follows

qt = γ0 + γ−1qt−1 + γ1σ
2
t−1(z

2
t−1 − 1).

This volatility specification may also be represented as GARCH(2,2) with certain equality

constraints placed on parameters. The columns ‘HGARCH’ and ‘CGARCH’ in Table 1

correspond to these two extended GARCH models and show that the parameters of

skewness NIC change very little after such replacements, if at all.

Next, we amend the SGE density specification with the possibility of jumps as in

Jorion (1988). The idea is that if extreme shocks are really responsible for the pattern

found through the skewness NIC, their explicit introduction into the model should make

the skewness NIC differently shaped. However, as shown in the column ‘+Jumps’, the

incorporation of jumps, while increasing the likelihood value (not shown) by a non-

negligible amount, changes the skewness coefficient little, and does not question the
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shape of the skewness NIC.

In the last set of robustness experiments, we replace the SGE density with that

of Skewed-t and Gram–Charlier distributions. The Skewed-t distribution is another

workhorse in estimating skewed conditional distributions in empirical finance; see, for

example, Hansen (1994) and Jondeau & Rockinger (2003). It has two parameters: the

asymmetry parameter λ and tail thickness parameter (degrees of freedom) ν. Standard-

ized to have zero mean and unit variance, it has the following probability density function:

f(z, s, k) = bc

(
1 +

ξ2

ν − 2

)−(ν+1)/2

, (1)

where ξ = (bz + a)/(1 − λ) if z < −a/b and ξ = (bz + a)/(1 + λ) otherwise, c =

Γ((ν + 1)/2)/Γ(ν/2)/
√
π(ν − 2), a = 4cλ(ν − 2)/(ν − 1), and b =

√
1 + 3λ2 − a2. We

again parameterize the asymmetry parameter λ via the same logistic transformation as

for the SGE density and the ‘transition’ specification for the underlying process.

The Gram–Charlier distribution has also gained popularity in empirical finance; see,

for example, Jondeau & Rockinger (2001) and León et al. (2005). It has two parameters:

the skewness s and kurtosis k. Standardized to have zero mean and unit variance, it has

the following probability density function:

f(z, s, k) = φ(z)

(
1 +

s

3!
(z3 − 3z) +

k − 3

4!
(z4 − 6z2 + 3)

)
, (2)

where φ(z) is the probability density of the standard normal distribution, and s and k

are parameters of the distribution associated with skewness and kurtosis, respectively:

∞∫
−∞

z3f(z, s, k)dz = s,

∞∫
−∞

z4f(z, s, k)dz = k.

We keep the kurtosis parameter k constant while setting the dynamics of the parameter

s through another logistic transformation

st = smin(k) +
smax(k)− smin(k)

1 + exp(−λ̃t)
,

where smin(k) and smin(k) are minimal and maximal possible values of the parameter st

for given k, for which the Gram–Charlier density is defined;1 as before, λ̃t follows the

1The expression (2) represents a proper density function only for a limited set of values of parameters
s and k, while for other values, the function f(·, s, k) in (2) may not be positive. Jondeau & Rockinger
(2001) find the region for s and k within which expression (2) is positive for any real z. This fact should
be taken into account while modeling the skewness dynamics using the Gram–Charlier distribution.
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dynamics of the ‘transition’ specification.

Figure 1: Skewed GED, Skewed-t and Gram–Charlier densities with estimated shape
parameters
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The columns ‘Skew-t’ and ‘G–C’ in Table 1 correspond to these two alternative

densities. For the Skewed-t case, the estimates of skewness parameters differ just a

bit from those in the column ‘main’ and are practically equal to those in the column

‘+Jumps’, while the likelihood value (not shown) is very close. The non-monotone shape

for the skewness NIC is in place. For the Gram–Charlier case, the skewness coefficients

are much farther away. However, the likelihood value (not shown), which is quite a bit

lower, indicates that this distribution is less suitable for adequately modeling a return

distribution with non-trivial dynamics for higher order moments and values thereof that

are sizably different from those of the normal distribution.2 Figure 1 graphs the three

densities for (averaged when time varying) estimated values of shape parameters. One

can see that the SGE and Skewed-t densities are pretty close, while the Gram–Charlier

density puts too much probability mass on small and large returns at the expense of

medium-sized returns.

2Recall that the Gram–Charlier density is derived from an expansion around the normal density.
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B Direct models for skewness

The model of León et al. (2005) reads:

rt = αrt−1 + σtzt,

where Ezt = 0 and Vzt = 1. The conditional variance σ2
t follows nonlinear asymmetric

GARCH dynamics:

σ2
t = β0 + β−1σ

2
t−1 + β1σ

2
t−1 (β∇ + zt−1)

2 ,

and the conditional skewness st and kurtosis kt follow the GARCH-like dynamics:

st = κ0 + κ−1st−1 + κ1z
3
t−1,

kt = δ0 + δ−1kt−1 + δ1z
4
t−1.

The conditional density of rt is

ft−1(rt) =

√
1

2π

ψ2
t

σtχt
e−

1
2
z2t ,

where

ψt = 1 +
1

6
st(z

3
t − 3zt) +

1

24
(kt − 3)(z4t − 6z2t + 3),

χt = 1 +
1

6
s2t +

1

24
(kt − 3)2.

It is straightforward to verify that in the León et al. (2005) model st ceases to

be conditional skewness (and kt to be conditional kurtosis) after the Gram–Charlier

polynomial ψt is squared to ensure positivity of the density.

The model of Harvey & Siddique (1999) reads

rt = c+mt + σtzt,

where Ezt = 0 and Vzt = 1. Here mt is the GARCH-M term:

mt = ζσ2
t ,

the conditional variance σ2
t+1 follows the GARCH dynamics:

σ2
t = β0 + β−1σ

2
t−1 + β1σ

2
t−1z

2
t−1,
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and the conditional (central) skewness st follows the GARCH-like dynamics:

st = κ0 + κ−1st−1 + κ1σ
3
t−1z

3
t−1.

Let µ1,t, µ2,t and µ3,t denote the 1st, 2nd and 3rd central moments of the non-central

t distribution with parameters νt and δt. These moments are related to the conditional

moments of rt via
mt

σt
=

µ1,t√
µ2,t

,
st
σ3
t

=
µ3,t

µ
3/2
2,t

.

Denote

ξt = Γ
(νt

2

)−1
Γ

(
νt − 1

2

)√
νt
2
.

The mapping between the 1st and 3rd central moments and distribution parameters is

µ1,t = ξtδt

and3

µ3,t =

(
νt(7− 2νt)

(νt − 2)(νt − 3)
+ 2ξ2t

)
ξtδ

3
t +

3νt
(νt − 2)(νt − 3)

ξtδt,

while the 2nd central moment (variance) equals

µ2,t =

(
νt

νt − 2
− ξ2t

)
δ2t +

νt
νt − 2

.

The conditional density of rt is4

ft−1(rt) =

√
µ2,t

π

1

σt
e−

δ2t
2 ν

νt
2
t (νt + ϕt)

− νt+1
2

∞∑
i=0

Γ
(
1
2
(νt + i+ 1)

)
Γ
(
1
2
νt
) δit

i!

(
2ϕt

νt + ϕt

) i
2

,

where

ϕt =
µ2,t (rt − c)2

σ2
t

.

One can see that in the Harvey & Siddique (1999) model, the conditional skewness

is closely tied to the conditional mean specification. In particular, setting mt = 0 forces

δt = 0 and, as a result, st = 0.

3We borrow the formula for the 3rd central moment from Hogben et al. (1961).
4The likelihood function (2) in Harvey & Siddique (1999) does not account for non-zero mean and

non-unit variance of the non-central t distribution.
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C Results for individual stocks

We run the main parametric model with the ‘transition’ skewness specification for an arbi-

trary set of individual stocks belonging to the S&P100 index (and thus to the S&P500).

The criterion for picking a particular stock is the availability of a long series of daily

returns, comparable with the data on the index itself. This set contains the following six

stocks: AEP, BA, C, IBM, T and XON. The purpose is to compare the shapes of the

skewness NIC for individual stocks with that for the index that contains these stocks.

Table 2: Estimation results for individual stocks

Stock → AEP BA C IBM T XON

variance equation

β−1 0.984
(0.005)

0.988
(0.004)

0.990
(0.003)

0.991
(0.003)

0.991
(0.003)

0.979
(0.006)

β1 −0.035
(0.008)

−0.035
(0.007)

−0.035
(0.008)

−0.042
(0.008)

−0.019
(0.009)

−0.045
(0.011)

β|1| 0.154
(0.024)

0.102
(0.017)

0.166
(0.025)

0.118
(0.017)

0.135
(0.024)

0.143
(0.022)

skewness equation

κ0 0.041
(0.012)

0.025
(0.013)

0.042
(0.017)

0.012
(0.025)

0.045
(0.038)

−0.012
(0.023)

κ−1 0.202
(0.116)

0.629
(0.131)

0.520
(0.139)

0.341
(0.103)

0.327
(0.528)

0.309
(0.148)

κ3 0.017
(0.029)

0.027
(0.034)

0.114
(0.036)

0.238
(0.057)

0.053
(0.048)

0.133
(0.053)

νλ 0.641
(1.689)

0.435
(0.698)

−0.056
(0.005)

−0.152
(0.056)

0.068
(0.313)

−0.159
(0.060)

shape parameter

η 1.28
(0.07)

1.34
(0.04)

1.25
(0.05)

1.33
(0.04)

1.40
(0.04)

1.45
(0.04)

Notes: Robust standard errors are in parentheses. Parametric model with
‘transition’ specification ‘3’ for conditional skewness is estimated.

Table 2 reports estimates for the six stocks, and Figure 2 depicts their skewness

NIC. The volatility parameters show a typical pattern and do not drastically differ from

those of indexes. The leverage is a bit lower, though, and the tails of the conditional

distribution are heavier than those for indexes. At the same time, the skewness equation

is quite different. There is moderate variability in the persistence coefficient κ−1, not as

big as in that for indexes. The shape of the skewness NIC, however, exhibits quite a lot

of variability. On average, it is flatter than those for indexes, and shows less tendency to

be non-monotonic. Interestingly, these discrepancies are not driven by a lack of big price

changes in the data: for all six stocks, the proportion of standardized returns that are

higher than unity in absolute value is around 27%, which is approximately equal to that

of the S&P500 index; the fractions of even bigger price changes are also pretty stable.
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Figure 2: Parametric skewness NIC for selected stocks from S&P100
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Notes: Skewness NIC is inferred from the parametric models for conditional skewness st for daily AEP,
BA, C, IBM, T and XON log returns depending on standardized residual zt−1 conditional on average
λ̃t−1.
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D Term structure of skewness NIC

Unlike volatility, skewness does not have a scaling property: for mean zero returns rt,

while Et[(rt+1 + rt+2)
2] = Et[r

2
t+1 + r2t+2], it is not the case that Et[(rt+1 + rt+2)

3] =

Et[r
3
t+1 + r3t+2]. This makes it difficult to deduce how the skewness over long returns

intervals is related to that over shorter returns subintervals. Engle (2011) shows that

the unconditional skewness of the S&P500 increases in absolute value with the length of

the time interval for horizons up to 100 days. Using the realized measure of skewness,

Neuberger (2012) obtains similar results for horizons from one month to one year. These

findings are inconsistent with the assumption of IID returns. In this section we find a

similar pattern for the skewness of higher frequency returns (from 1-day to 5-day).

Table 3: Term structure of skewness NIC for S&P500 index

S&P500

Frequency → 1 2 3 4 5

variance equation

β−1 0.988
(0.003)

0.973
(0.005)

0.967
(0.007)

0.960
(0.006)

0.950
(0.009)

β1 −0.074
(0.010)

−0.102
(0.013)

−0.103
(0.015)

−0.107
(0.014)

−0.120
(0.016)

β|1| 0.117
(0.012)

0.163
(0.015)

0.173
(0.017)

0.192
(0.017)

0.210
(0.018)

skewness equation

κ0 −0.050
(0.016)

−0.149
(0.042)

−0.259
(0.073)

−0.368
(0.073)

−0.559
(0.056)

κ−1 0.606
(0.088)

0.394
(0.145)

0.296
(0.193)

0.081
(0.164)

−0.321
(0.081)

κ3 0.231
(0.042)

0.103
(0.029)

0.077
(0.064)

0.107
(0.046)

0.237
(0.070)

νλ −0.212
(0.021)

0.000
(0.001)

0.155
(0.341)

−0.055
(0.015)

−0.279
(0.041)

shape parameter

η 1.35
(0.04)

1.56
(0.05)

1.53
(0.06)

1.52
(0.06)

1.53
(0.06)

skewness summary statistics

mean −0.162 −0.273 −0.411 −0.448 −0.457
st.dev. 0.250 0.118 0.103 0.097 0.151

Notes: Robust standard errors are in parentheses. ‘Freq’ refers to data
frequency: k refers to k-day returns. Parametric model with ‘transition’
skewness specification is estimated.

We run the main parametric model with S&P500 returns computed over several days

in a row – that is, apart from the daily returns, we also compute 2-day, 3-day, 4-day
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and 5-day returns. In order not to lose dramatically in terms of the length of the series,

we have repeated calculations with one period shift, one and two-period shifts, etc., so

that in total we obtain the same number of observations as in the original series of daily

returns. Another helpful feature of such a strategy is that the proportion of large and

small shocks stays approximately the same as the data frequency varies.

Table 3 reports estimates for the five frequencies, and Figure 3 depicts the corre-

sponding skewness NIC. As far as volatility is concerned, the persistence coefficient β−1

monotonically declines while the degrees of impact of past returns β|1| and β1 monoton-

ically increase as the data frequency goes down. The skewness NIC, however, shows an

irregular pattern. While on average the returns become more skewed to the left and the

persistence coefficient κ−1 goes down monotonically and quite abruptly, the shape of the

skewness NIC does not exhibit non-monotonicity for 2-day, 3-day and 4-day returns. For

5-daily (i.e. weekly) returns, the skewness NIC has a ‘rotated S’-shape similar to that for

daily returns.

In the last panel of Table 3, we report the average implied skewness and its standard

deviation. One can see that for all time horizons skewness varies substantially over time.

On average, skewness is negative for all horizons and monotonically increases in absolute

value with the horizon as in Engle (2011) and Neuberger (2012).
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Figure 3: Parametric skewness NIC for multiperiod returns from S&P500
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Notes: Skewness NIC is inferred from the parametric models for conditional skewness st for 1- to 5-day
S&P500 log returns depending on standardized residual zt−1 conditional on average λ̃t−1.
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